精英家教网 > 高中数学 > 题目详情
12.点P从(1,0)出发,沿单位圆按逆时针方向运动$\frac{2π}{3}$弧长到达Q点,则Q的坐标为(  )
A.$(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$B.$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$C.$(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$D.$(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$

分析 由题意推出∠QOx角的大小,然后求出Q点的坐标.

解答 解:点P从(0,1)出发,沿单位圆逆时针方向运动$\frac{2π}{3}$弧长到达Q点,所以∠QOx=$\frac{2π}{3}$,
所以Q(cos$\frac{2π}{3}$,sin$\frac{2π}{3}$),所以Q$(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$.
故选:A

点评 本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,
(Ⅰ)证明:A1O∥平面B1CD1
(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若x,y满足$\left\{\begin{array}{l}{x≤3}\\{x+y≥2}\\{y≤x}\end{array}\right.$,则x+2y的最大值为(  )
A.1B.3C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,∠A=60°,c=$\frac{3}{7}$a.
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若M={1,2,3,6},N={2,3,4,7,9},则M∩N=(  )
A.{2,3}B.{1,4}C.{1,2,3,4,6,7,9}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=pe-x+x+1(p∈R).
(Ⅰ)当实数p=e时,求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当p=1时,若直线y=mx+1与曲线y=f(x)没有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中正确的是(  )
①如果α是第一象限的角,则角-α是第四象限的角
②函数y=sinx在[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域是[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]
③已知角α的终边上的点P的坐标为(3,-4),则sinα=-$\frac{4}{5}$
④已知α为第二象限的角,化简tanα$\sqrt{1-{{sin}^2}α}$=sinα.
A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(  )
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+3C.$\frac{3π}{2}$+1D.$\frac{3π}{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,b>0,a3+b3=2.证明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.

查看答案和解析>>

同步练习册答案