分析 (1)由柯西不等式即可证明,
(2)由a3+b3=2转化为$\frac{(a+b)^{3}-2}{3(a+b)}$=ab,再由均值不等式可得:$\frac{(a+b)^{3}-2}{3(a+b)}$=ab≤($\frac{a+b}{2}$)2,即可得到$\frac{1}{4}$(a+b)3≤2,问题得以证明.
解答 证明:(1)由柯西不等式得:(a+b)(a5+b5)≥($\sqrt{a•{a}^{5}}$+$\sqrt{b•{b}^{5}}$)2=(a3+b3)2≥4,
当且仅当$\sqrt{a{b}^{5}}$=$\sqrt{b{a}^{5}}$,即a=b=1时取等号,
(2)∵a3+b3=2,
∴(a+b)(a2-ab+b2)=2,
∴(a+b)[(a+b)2-3ab]=2,
∴(a+b)3-3ab(a+b)=2,
∴$\frac{(a+b)^{3}-2}{3(a+b)}$=ab,
由均值不等式可得:$\frac{(a+b)^{3}-2}{3(a+b)}$=ab≤($\frac{a+b}{2}$)2,
∴(a+b)3-2≤$\frac{3(a+b)^{3}}{4}$,
∴$\frac{1}{4}$(a+b)3≤2,
∴a+b≤2,当且仅当a=b=1时等号成立.
点评 本题考查了不等式的证明,掌握柯西不等式和均值不等式是关键,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$ | B. | $(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$ | C. | $(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$ | D. | $(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
| 天数 | 2 | 16 | 36 | 25 | 7 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com