精英家教网 > 高中数学 > 题目详情
10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天数216362574
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

分析 (1)由题意知X的可能取值为200,300,500,分别求出相应的概率,由此能求出X的分布列.
(2)当n≤200时,Y=n(6-4)=2n≤400,EY≤400;当200<n≤300时,EY≤1.2×300+160=520;当300<n≤500时,n=300时,(EY)max=640-0.4×300=520;当n≥500时,EY≤1440-2×500=440.从而得到当n=300时,EY最大值为520元.

解答 解:(1)由题意知X的可能取值为200,300,500,
P(X=200)=$\frac{2+16}{90}$=0.2,
P(X=300)=$\frac{36}{90}=0.4$,
P(X=500)=$\frac{25+7+4}{90}$=0.4,
∴X的分布列为:

 X 200 300 500
 P 0.2 0.4 0.4
(2)当n≤200时,Y=n(6-4)=2n≤400,EY≤400,
当200<n≤300时,
若x=200,则Y=200×(6-4)+(n-200)×2-4)=800-2n,
若x≥300,则Y=n(6-4)=2n,
∴EY=p(x=200)×(800-2n)+p(x≥300)×2n=0.2(800-2n)+0.8=1.2n+160,
∴EY≤1.2×300+160=520,
当300<n≤500时,若x=200,则Y=800-2n,
若x=300,则Y=300×(6-4)+(n-300)×(2-4)=1200-2n,
∴当n=300时,(EY)max=640-0.4×300=520,
若x=500,则Y=2n,
∴EY=0.2×(800-2n)+0.4(1200-2n)+0.4×2n=640-0.4n,
当n≥500时,Y=$\left\{\begin{array}{l}{800-2n,x=200}\\{1200-2n,x=300}\\{2000-2n,x=500}\end{array}\right.$,
EY=0.2(800-2n)+0.4(1200-2n)+0.4(2000-2n)=1440-2n,
∴EY≤1440-2×500=440.
综上,当n=300时,EY最大值为520元.

点评 本题考查离散型随机变量的分布列的求法,考查数学期望的最大值的求法,考查函数、离散型随机变量分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查分类与整合思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,∠A=60°,c=$\frac{3}{7}$a.
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(  )
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+3C.$\frac{3π}{2}$+1D.$\frac{3π}{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数 f(x)=ex(ex-a)-a2x.
(1)讨论 f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ的最大值为(  )
A.3B.2$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,b>0,a3+b3=2.证明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).
123m+n
(1)试求编号为2的抽屉内放的是黑球的概率p;
(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<$\frac{n}{(m+n)(n-1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=excosx-x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案