精英家教网 > 高中数学 > 题目详情
5.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ的最大值为(  )
A.3B.2$\sqrt{2}$C.$\sqrt{5}$D.2

分析 如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为($\frac{2\sqrt{5}}{5}$cosθ+1,$\frac{2\sqrt{5}}{5}$sinθ+2),根据$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,求出λ,μ,根据三角函数的性质即可求出最值.

解答 解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,
则A(0,0),B(1,0),D(0,2),C(1,2),
∵动点P在以点C为圆心且与BD相切的圆上,
设圆的半径为r,
∵BC=2,CD=1,
∴BD=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$
∴$\frac{1}{2}$BC•CD=$\frac{1}{2}$BD•r,
∴r=$\frac{2}{\sqrt{5}}$,
∴圆的方程为(x-1)2+(y-2)2=$\frac{4}{5}$,
设点P的坐标为($\frac{2\sqrt{5}}{5}$cosθ+1,$\frac{2\sqrt{5}}{5}$sinθ+2),
∵$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,
∴($\frac{2\sqrt{5}}{5}$cosθ+1,$\frac{2\sqrt{5}}{5}$sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),
∴$\frac{2\sqrt{5}}{5}$cosθ+1=λ,$\frac{2\sqrt{5}}{5}$sinθ+2=2μ,
∴λ+μ=$\frac{2\sqrt{5}}{5}$cosθ+$\frac{\sqrt{5}}{5}$sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵-1≤sin(θ+φ)≤1,
∴1≤λ+μ≤3,
故λ+μ的最大值为3,
故选:A

点评 本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P的坐标,考查了学生的运算能力和转化能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=$\sqrt{6}$,c=3,则A=75°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(  )
A.x>3B.x>4C.x≤4D.x≤5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α∈(0,$\frac{π}{2}$),tanα=2,则cos(α-$\frac{π}{4}$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天数216362574
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线C:y2=4x的焦点F,且斜率为$\sqrt{3}$的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10$\sqrt{7}$cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=$\frac{1}{3}$,则cos(α-β)=-$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案