精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.

分析 (1)当a=1时,f(x)=-x2+x+4,g(x)=|x+1|+|x-1|=$\left\{\begin{array}{l}{2x,x>1}\\{2,-1≤x≤1}\\{-2x,x<-1}\end{array}\right.$,分x>1、x∈[-1,1]、x∈(-∞,-1)三类讨论,结合g(x)与f(x)的单调性质即可求得f(x)≥g(x)的解集为[-1,$\frac{\sqrt{17}-1}{2}$];
(2)依题意得:-x2+ax+4≥2在[-1,1]恒成立?x2-ax-2≤0在[-1,1]恒成立,只需$\left\{\begin{array}{l}{{1}^{2}-a•1-2≤0}\\{{(-1)}^{2}-a(-1)-2≤0}\end{array}\right.$,解之即可得a的取值范围.

解答 解:(1)当a=1时,f(x)=-x2+x+4,是开口向下,对称轴为x=$\frac{1}{2}$的二次函数,
g(x)=|x+1|+|x-1|=$\left\{\begin{array}{l}{2x,x>1}\\{2,-1≤x≤1}\\{-2x,x<-1}\end{array}\right.$,
当x∈(1,+∞)时,令-x2+x+4=2x,解得x=$\frac{\sqrt{17}-1}{2}$,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,$\frac{\sqrt{17}-1}{2}$];
当x∈[-1,1]时,g(x)=2,f(x)≥f(-1)=2.
当x∈(-∞,-1)时,g(x)单调递减,f(x)单调递增,且g(-1)=f(-1)=2.
综上所述,f(x)≥g(x)的解集为[-1,$\frac{\sqrt{17}-1}{2}$];
(2)依题意得:-x2+ax+4≥2在[-1,1]恒成立,即x2-ax-2≤0在[-1,1]恒成立,则只需$\left\{\begin{array}{l}{{1}^{2}-a•1-2≤0}\\{{(-1)}^{2}-a(-1)-2≤0}\end{array}\right.$,解得-1≤a≤1,
故a的取值范围是[-1,1].

点评 本题考查绝对值不等式的解法,去掉绝对值符号是关键,考查分类讨论思想与等价转化思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}{3x+2y-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$则z=x-y的取值范围是(  )
A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x∈R|0≤x≤2},集合N={x∈R|x2≤1},则M∪N=(  )
A.(0,1]B.[0,2]C.[-1,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知抛物线x2=y,点A(-$\frac{1}{2}$,$\frac{1}{4}$),B($\frac{3}{2}$,$\frac{9}{4}$),抛物线上的点P(x,y)(-$\frac{1}{2}$<x<$\frac{3}{2}$),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA|•|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.记Sn为等比数列{an}的前n项和.已知S2=2,S3=-6.
(1)求{an}的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ的最大值为(  )
A.3B.2$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3-2x+ex-$\frac{1}{{e}^{x}}$,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0.则实数a的取值范围是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

同步练习册答案