分析 (1)由题意可知a3=S3-S2=-6-2=-8,a1=$\frac{{a}_{3}}{{q}^{2}}$=$\frac{-8}{{q}^{2}}$,a2=$\frac{{a}_{3}}{q}$=$\frac{-8}{q}$,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{an}的通项公式;
(2)由(1)可知.利用等比数列前n项和公式,即可求得Sn,分别求得Sn+1,Sn+2,显然Sn+1+Sn+2=2Sn,则Sn+1,Sn,Sn+2成等差数列.
解答 解:(1)设等比数列{an}首项为a1,公比为q,
则a3=S3-S2=-6-2=-8,则a1=$\frac{{a}_{3}}{{q}^{2}}$=$\frac{-8}{{q}^{2}}$,a2=$\frac{{a}_{3}}{q}$=$\frac{-8}{q}$,
由a1+a2=2,$\frac{-8}{{q}^{2}}$+$\frac{-8}{q}$=2,整理得:q2+4q+4=0,解得:q=-2,
则a1=-2,an=(-2)(-2)n-1=(-2)n,
∴{an}的通项公式an=(-2)n;
(2)由(1)可知:Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{-2[1-(-2)^{n}]}{1-(-2)}$=-$\frac{1}{3}$(2+(-2)n+1),
则Sn+1=-$\frac{1}{3}$(2+(-2)n+2),Sn+2=-$\frac{1}{3}$(2+(-2)n+3),
由Sn+1+Sn+2=-$\frac{1}{3}$(2+(-2)n+2)-$\frac{1}{3}$(2+(-2)n+3)=-$\frac{1}{3}$[4+(-2)×(-2)n+1+(-2)2×+(-2)n+1],
=-$\frac{1}{3}$[4+2(-2)n+1]=2×[-$\frac{1}{3}$(2+(-2)n+1)],
=2Sn,
即Sn+1+Sn+2=2Sn,
∴Sn+1,Sn,Sn+2成等差数列.
点评 本题考查等比数列通项公式,等比数列前n项和,等差数列的性质,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com