精英家教网 > 高中数学 > 题目详情
11.已知集合A={x∈R|0≤x≤2},集合N={x∈R|x2≤1},则M∪N=(  )
A.(0,1]B.[0,2]C.[-1,2]D.(-∞,2]

分析 运用二次不等式的解法,化简集合B,再由并集的定义,即可得到所求集合.

解答 解:集合A={x∈R|0≤x≤2},
集合N={x∈R|x2≤1}={x∈R|-1≤x≤1},
则M∪N={x∈R|-1≤x≤2}=[-1,2].
故选:C.

点评 本题考查集合的运算,主要是并集的求法,同时考查二次不等式的解法,运用定义法解题是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设复数z满足(1+i)z=2i,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,如果输入n=7,m=4,则输出的p等于(  )
A.120B.360C.840D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A={x|-2≤x≤0},B={x|x2-x-2≤0},则A∪B=[-2,2],(∁RA)∩B=(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足z2=-4,则复数z的实部为(  )
A.2B.1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(  )
A.x>3B.x>4C.x≤4D.x≤5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案