精英家教网 > 高中数学 > 题目详情
在△ABC中,∠A,∠B,∠C所对的边长分别为a,b,c.若sinA:sinB:sinC=5:7:8,则a:b:c=
 
,∠B的大小是
 
°.
分析:先通过正弦定理求出a,b,c的关系,设a=5k,b=7k,c=8k,代入余弦定理,求出cos∠B的值,进而求出∠B.
解答:解:由正弦定理得sinA:sinB:sinC=5:7:8
∴a:b:c=5:7:8
设a=5k,b=7k,c=8k,
由余弦定理cos∠B=
a2+c2-b2
2ac
=
25k2+64k2-49k2
2•5k•8k
=
1
2

∴∠B=
π
3

故答案为:5:7:8,
π
3
点评:本题主要考查了正弦定理和余弦定理的应用.解三角形的问题时,要灵活运用这两个定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂一模)已知函数f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函数f(x)的单调减区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C的对边,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)在△ABC中,a、b、c为角A、B、C所对的三边.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,设内角B为x,周长为y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则(cosA一cosC)2的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C的对边分别为a、b、c设向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知a=2,b=
7
,∠B=
π
3
,则△ABC的面积为(  )

查看答案和解析>>

同步练习册答案