精英家教网 > 高中数学 > 题目详情
(2009•烟台二模)在△ABC中,a、b、c为角A、B、C所对的三边.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,设内角B为x,周长为y,求y=f(x)的最大值.
分析:(1)利用余弦定理表示出cosA,已知等式变形后代入计算求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(2)由a与cosA的值,利用余弦定理列出关系式,再利用完全平方公式变形,利用基本不等式求出b+c的最大值,即可确定出周长的最大值.
解答:解:(1)∵b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2

∵A为三角形的内角,
∴A=60°;
(2)∵a=
3
,cosA=
1
2

∴由余弦定理得:3=b2+c2-bc=(b+c)2-3bc≥(b+c)2-
3
4
(b+c)2=
1
4
(b+c)2
∴b+c≤2
3

则y=f(x)的最大值为3
3
点评:此题考查了余弦定理,基本不等式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•烟台二模)已知f(x)=
(3-a)x-4a,x<1
logax,x≥1
是(-∞,+∞)上的增函数,那么a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)函数f(x)=sin(ωx+?)(ω>0,|?|<
π
2
)的最小正周期为π,且其图象向右平移
π
12
个单位后得到的函数为奇函数,则函数f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知函数f(x)是R上的偶函数,且f(1-x)=f(1+x),当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log7x 的零点个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知函数f(x)=gx-x (g为自然对数的底数).
(1)求f(x)的最小值;
(2)设不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2
},且M∩P≠∅,求实数a的取值范围;
(3)已知n∈N+,且S n=
n
0
f(x)dx
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使得Sn=
n
k=1
(ak+bk)
?若存在,请求出数列{an},{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如下,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案