精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,且.

(1)当时,写出的通项公式(直接写出答案,无需过程);

(2)求最小整数,使得当时, 是单调递增数列;

(3)是否存在使得是等比数列?若存在请求出;若不存在请说明理由.

【答案】(1);(2)见解析;(3)见解析.

【解析】试题分析:(1)写出几项,归纳即得,(2)先计算归纳可得当时, 是单调递增数列.再根据数学归纳法给以证明,(3)根据计算可得时, 不是等比数列.再证时 , 也不是等比数列.

试题解析:(1)

(2)当时, ,,,不单调递增;

时,由(1)知不单调递增;

时, ,,,不单调递增;

时, ,,,

时, ,,,

由此猜测当时, 是单调递增数列.

下面用数学归纳法证明一个更强得猜想:当时,

时,猜想成立;

假设当时,猜想成立,即,

时,因为,所以,

时,猜想扔成立.

,及数学归纳法知,当时, ,

此时因为,所以,所以,

由此当时, 是单调递增数列.

(3)由(2)知, 时, 不是等比数列.

时, ,因此,

可求出通项公式为,所以不存在使得是等比数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.
(1)求圆C的方程;
(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船A从某港口O将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以30海里/小时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以V海里/小时的航速匀速行驶,经过t小时与轮船B相遇.
(1)若使相遇时轮船A航距最短,则轮船A的航行速度大小应为多少?
(2)假设轮船A的最高航行速度只能达到30海里/小时,则轮船A以多大速度及什么航行方向才能在最短时间与轮船B相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

)求 的值.

)求证:数列是等比数列.

)令,如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线yx2-6x+1与轴交于点,与轴交于 两点.

(1)求△的面积

(2)外接圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准如下:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知某学校学生的原始成绩均分布在[50,100]内,为了了解该校学生的成绩,抽取了50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出样本频率分布直方图如图所示.

(Ⅰ)求图中x的值,并根据样本数据估计该校学生学业水平测试的合格率;
(Ⅱ)在选取的样本中,从70分以下的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中成绩为D等级的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点O和点F2(﹣ ,0)分别为双曲线 =1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求函数 的单调区间和极值;
(2)是否存在实数 ,使得函数 上的最小值为 ?若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案