精英家教网 > 高中数学 > 题目详情

【题目】轮船A从某港口O将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以30海里/小时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以V海里/小时的航速匀速行驶,经过t小时与轮船B相遇.
(1)若使相遇时轮船A航距最短,则轮船A的航行速度大小应为多少?
(2)假设轮船A的最高航行速度只能达到30海里/小时,则轮船A以多大速度及什么航行方向才能在最短时间与轮船B相遇,并说明理由.

【答案】
(1)解:设AB两船在Q处相遇,

在△OPQ中,OP=20,PQ=30t,OQ=Vt,∠OPQ=60°,

由余弦定理可得Vt= =

∴当t= 时,Vt取得最小值10

此时V= =30

即轮船A以30 海里/小时的速度航行,相遇时小艇的航行距离最小


(2)解:在△POQ中,OQ=30t,

由余弦定理得:OQ2=PQ2+OP2﹣2×PQ×OPcos∠OPQ,

即(30t)2=400+900t2﹣1200tcos60°

∴600t=400

解得:t= ,∴PQ=OQ=20,

∴△OPQ为等边三角形,∴∠POQ=30°.

故航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.


【解析】(1)设AB两船在Q处相遇,根据余弦定理即可得出答案,(2)利用余弦定理计算出航行时间t,得出PQ,OQ距离,从而得出∠POQ的度数,得出航行方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了解高一年级名学生在寒假里每天阅读的平均时间(单位:小时)情况,随机抽取了名学生,记录他们的阅读平均时间,将数据分成组: ,并整理得到如下的频率分布直方图:

)求样本中阅读的平均时间为内的人数.

)已知样本中阅读的平均时间在内的学生有人,现从高一年级名学生中随机抽取一人,估计其阅读的平均时间在内的概率.

)在样本中,使用分层抽样的方法,从阅读的平均时间在内的学生中抽取人,再从这人中随机选取人参加阅读展示,则选到的学生恰好阅读的平均时间都在内的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足Sn=2﹣an(n∈N*).数列{bn}满足(2n﹣1)bn+1﹣(2n+1)bn=0(n∈N*),且b1=1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn , 求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=2,b2+c2﹣bc=4,则△ABC的面积的取值范围是( )
A.( ]
B.(0, ]
C.( ]
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,D是BC边的中点,AE⊥AD,AE交CB的延长线于E,则下面结论中正确的是(  )

A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.

(1)求AC的长;
(2)试比较BE与EF的长度关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AE:EB=1:2.

(1)求△AEF与△CDF的周长比;
(2)如果△AEF的面积等于6cm2 , 求△CDF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且.

(1)当时,写出的通项公式(直接写出答案,无需过程);

(2)求最小整数,使得当时, 是单调递增数列;

(3)是否存在使得是等比数列?若存在请求出;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的方程为ρ=2 sin ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数),判断直线l和圆C的位置关系.

查看答案和解析>>

同步练习册答案