精英家教网 > 高中数学 > 题目详情
18.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为$\frac{1}{5}$,则图中直角三角形中较大锐角的正弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{\sqrt{3}}{3}$

分析 求出四个全等的直角三角形的三边的关系,从而求出sinθ的值即可.

解答 解:在大正方形内随机取一点,这一点落在小正方形的概率为$\frac{1}{5}$,
不妨设大正方形面积为5,小正方形面积为1,
∴大正方形边长为$\sqrt{5}$,小正方形的边长为1.
∴四个全等的直角三角形的斜边的长是$\sqrt{5}$,
较短的直角边的长是1,较长的直角边的长是2,
故sinθ=$\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$,
故选:B.

点评 本题考查了几何概型问题,考查三角函数问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.
(Ⅰ)求C的大小;
(Ⅱ)若$c=\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A、B、C所对的边分别为a,b,c,且b=$\sqrt{3}$,$\sqrt{3}$sinC=(sinA+$\sqrt{3}$cosA)sinB,则AC边上的高的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线C:y2=4x,过焦点F且斜率为$\sqrt{3}$的直线与C相交于P,Q两点,且P,Q两点在准线上的投影分别为M,N两点,则S△MFN=(  )
A.$\frac{8}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{16}{3}$D.$\frac{{16\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知{an}是等比数列,a2=1,a5=$\frac{1}{8}$,设Sn=a1a2+a2a3+…+anan+1(n∈N*),λ为实数.若对?n∈N*都有λ>Sn成立,则λ的取值范围是[$\frac{8}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图的程序框图,则输出的S=(  )
A.2B.-3C.-$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,双曲线以A,B为焦点,且经过C,D两点,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是秦九韶算法的一个程序框图,则输出的S为(  )
A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,a1=1,a2=2,且${a_{n+2}}-{a_n}=1+{(-1)^n}$(n∈N+),则S100=(  )
A.0B.1300C.2600D.2602

查看答案和解析>>

同步练习册答案