分析 (Ⅰ)由正弦定理得到a2+b2-c2=-ab,由此利用余弦定理能求出$C=\frac{2π}{3}$.
(Ⅱ)由正弦定理求出a=2sinA,b=2sinB.由此利用正弦加法定理求出周长l=$2sin({A+\frac{π}{3}})+\sqrt{3}$,由此能求出△ABC周长的最大值.
解答 解:(Ⅰ)∵△ABC中,角A,B,C的对边分别是a,b,c,
(2a+b)sinA+(2b+a)sinB=2csinC.
∴由已知,得$({2a+b})•\frac{a}{2R}+({2b+a})•\frac{b}{2R}=2c•\frac{c}{2R}$,
即a2+b2-c2=-ab,
∴$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=-\frac{1}{2}$,
由0<C<π,
∴$C=\frac{2π}{3}$.
(Ⅱ)∵$c=\sqrt{3}$,∴$\frac{a}{sinA}=\frac{b}{sinB}=\frac{{\sqrt{3}}}{{\frac{{\sqrt{3}}}{2}}}$,
∴a=2sinA,b=2sinB.
设周长为l,则$l=a+b+c=2sinA+2sinB+\sqrt{3}=2sinA+2sin({\frac{π}{3}-A})+\sqrt{3}$
=$2sinA+2sin\frac{π}{3}cosA+2cos\frac{π}{3}sinA+\sqrt{3}=sinA+\sqrt{3}cosA+\sqrt{3}$
=$2sin({A+\frac{π}{3}})+\sqrt{3}$
∵$0<A<\frac{π}{3}$,∴2$\sqrt{3}$<2sin(A+$\frac{π}{3}$)+$\sqrt{3}$≤2+$\sqrt{3}$,
∴△ABC周长的最大值为$2+\sqrt{3}$.
点评 本题三角形周长的最大值的求法,考查余弦定理、正弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、方程与函数思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ | D. | $\sqrt{3}$或$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 时段 | 1 | 2 | 3 | 4 | 5 | 6 |
| 单价x(元) | 800 | 820 | 840 | 860 | 880 | 900 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com