精英家教网 > 高中数学 > 题目详情
3.设点F1、F2是平面上左、右两个不同的定点,|F1F2|=2m,动点P满足:$|P{F_1}|•|P{F_2}|(1+cos∠{F_1}P{F_2})=6{m^2}$.
(1)求证:动点P的轨迹Γ为椭圆;
(2)抛物线C满足:①顶点在椭圆Γ的中心;②焦点与椭圆Γ的右焦点重合.
设抛物线C与椭圆Γ的一个交点为A.问:是否存在正实数m,使得△AF1F2的边长为连续自然数.若存在,求出m的值;若不存在,说明理由.

分析 (1)根据题意,分2种情况讨论:①点P、F1、F2构成三角形,②点P、F1、F2不构成三角形,每种情况下分析可得|PF1|+|PF2|=4m,由椭圆的定义分析可得答案;
(2)根据题意,由(1)可得,动点P的轨迹方程,分析可得抛物线的焦点坐标,假设存在满足条件的实数m,结合椭圆与抛物线的性质分析可得m的值,即可得答案.

解答 解:(1)证明:根据题意,分2种情况讨论:
若点P、F1、F2构成三角形,又由$cos∠{F_1}P{F_2}=\frac{{|P{F_1}{|^2}+|P{F_2}{|^2}-|{F_1}{F_2}{|^2}}}{{2|P{F_1}|•|P{F_2}|}}$,
则$|P{F_1}|•|P{F_2}|(1+\frac{{|P{F_1}{|^2}+|P{F_2}{|^2}-|{F_1}{F_2}{|^2}}}{{2|P{F_1}|•|P{F_2}|}})=6{m^2}$.
整理得${(|P{F_1}|+|P{F_2}|)^2}=16{m^2}$,即|PF1|+|PF2|=4m(4m>2m>0).
若点P、F1、F2不构成三角形,即P、F1、F2三点共线;
也满足|PF1|+|PF2|=4m(4m>2m>0).
所以动点P的轨迹为椭圆.
(2)根据题意,由(1)可得,动点P的轨迹方程为$\frac{x^2}{{4{m^2}}}+\frac{y^2}{{3{m^2}}}=1$.
抛物线的焦点坐标为(m,0)与椭圆的右焦点F2重合.
假设存在实数m,使得△AF1F2的边长为连续自然数.
因为|PF1|+|PF2|=4m=2|F1F2|,
不妨设||AF1|=2m+1,$|{F_1}{F_2}|=2m,|A{F_2}|=2m-1\;(m∈{N^*})$.
由抛物线的定义可知|AF2|=2m-1=xA+m,解得xA=m-1,
设点A的坐标为(m-1,yA),$\left\{{\begin{array}{l}{{y_A}^2=4m(m-1)}\\{\frac{{{{(m-1)}^2}}}{{4{m^2}}}+\frac{{{y_A}^2}}{{3{m^2}}}=1}\end{array}}\right.$
整理得7m2-22m+3=0,解得$m=\frac{1}{7}(舍)$或m=3.
所以存在实数m=3,使得△AF1F2的边长为连续自然数.

点评 本题考查椭圆的几何性质,涉及直线与椭圆的位置关系;关键是掌握椭圆的几何性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx+m(x2-x),m∈R.
(Ⅰ)当m=-1时,求函数f(x)的最值;
(Ⅱ)若函数f(x)有极值点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O是△ABC的外心,∠C=45°,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$(m,n∈R),则m+n的取值范围是(  )
A.[$-\sqrt{2}$,$\sqrt{2}$]B.[$-\sqrt{2}$,1)C.[$-\sqrt{2}$,-1)D.(1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面积为(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)<2;
(2)求直线y=3与f(x)的图象所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.
(Ⅰ)求C的大小;
(Ⅱ)若$c=\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α,β∈[0,π],且满足sinαcosβ-cosαsinβ=1,则cos(2α-β)的取值范围为(  )
A.[0,1]B.[-1,0]C.[-1,1]D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m=a+blnb,n=b+blna,若a>b>0,则m,n的大小关系是(  )
A.m>nB.m<nC.m=nD.大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知{an}是等比数列,a2=1,a5=$\frac{1}{8}$,设Sn=a1a2+a2a3+…+anan+1(n∈N*),λ为实数.若对?n∈N*都有λ>Sn成立,则λ的取值范围是[$\frac{8}{3}$,+∞).

查看答案和解析>>

同步练习册答案