精英家教网 > 高中数学 > 题目详情
19.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=1,2b-$\sqrt{3}$c=2acosC,sinC=$\frac{\sqrt{3}}{2}$,则△ABC的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{2}$

分析 2b-$\sqrt{3}$c=2acosC,利用正弦定理,求出A;sinC=$\frac{\sqrt{3}}{2}$,可得C=60°或120°,分类讨论,可得三角形面积.

解答 解:∵2b-$\sqrt{3}$c=2acosC,
∴由正弦定理可得2sinB-$\sqrt{3}$sinC=2sinAcosC,
∴2sin(A+C)-$\sqrt{3}$sinC=2sinAcosC,
∴2cosAsinC=$\sqrt{3}$sinC,
∴cosA=$\frac{\sqrt{3}}{2}$∴A=30°,
∵sinC=$\frac{\sqrt{3}}{2}$,∴C=60°或120°
A=30°,C=60°,B=90°,a=1,∴△ABC的面积为$\frac{1}{2}×1×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
A=30°,C=120°,B=30°,a=1,∴△ABC的面积为$\frac{1}{2}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
故选:C.

点评 本题考查正弦定理,考查三角形面积的计算,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x-3y+4|的最大值为(  )
A.3B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E处按$\overrightarrow{EP}$方向释放机器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.
已知AB=18米,E为AB中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记$\overrightarrow{EP}$与$\overrightarrow{EB}$的夹角为θ.
(1)若θ=60°,AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到0.1°)
(2)如何设计矩形区域ABCD的宽AD的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$f(x)=\frac{1}{4}{x^2}+cosx$,f'(x)为f(x)的导函数,则f'(x)的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O是△ABC的外心,∠C=45°,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$(m,n∈R),则m+n的取值范围是(  )
A.[$-\sqrt{2}$,$\sqrt{2}$]B.[$-\sqrt{2}$,1)C.[$-\sqrt{2}$,-1)D.(1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,△ABC的周长为12,AB,AC边的中点分别为F1(-1,0)和F2(1,0),点M为BC边的中点.
(1)求点M的轨迹方程;
(2)设点M的轨迹为曲线T,直线MF1与曲线T另一个交点为N,线段MF2中点为E,记S=S${\;}_{△N{F}_{1}O}$+S${\;}_{△M{F}_{1}E}$,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面积为(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.
(Ⅰ)求C的大小;
(Ⅱ)若$c=\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A、B、C所对的边分别为a,b,c,且b=$\sqrt{3}$,$\sqrt{3}$sinC=(sinA+$\sqrt{3}$cosA)sinB,则AC边上的高的最大值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案