精英家教网 > 高中数学 > 题目详情
18.某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E处按$\overrightarrow{EP}$方向释放机器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.
已知AB=18米,E为AB中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记$\overrightarrow{EP}$与$\overrightarrow{EB}$的夹角为θ.
(1)若θ=60°,AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到0.1°)
(2)如何设计矩形区域ABCD的宽AD的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲?

分析 (1)利用正弦定理,即可求解;
(2)以AB所在直线为x轴,AB中垂线为y轴,建平面直角坐标系,求出Q的轨迹方程,即可得出结论.

解答 解:(1)△AEQ中,AQ=2EQ,∠AEQ=120°…(2分)
由正弦定理,得:$\frac{EQ}{sin∠QAE}=\frac{AQ}{sin∠AEQ}$
所以$sin∠QAE=\frac{{\sqrt{3}}}{4}$…(4分)
所以$∠QAE=arcsin\frac{{\sqrt{3}}}{4}≈25.7°$
所以应在矩形区域ABCD内,按照与$\overrightarrow{AB}$夹角为25.7°的向量$\overrightarrow{AQ}$方向释放机器人乙,才能挑战成功…(6分)
(2)以AB所在直线为x轴,AB中垂线为y轴,建平面直角坐标系,
设Q(x,y)(y≥0)…(8分)
由题意,知AQ=2EQ,所以$\sqrt{{{(x+9)}^2}+{y^2}}=2\sqrt{{x^2}+{y^2}}$
所以(x-3)2+y2=36(y≥0)…(11分)
即点Q的轨迹是以(3,0)为圆心,6为半径的上半圆在矩形区域ABCD内的部分
所以当AD≥6米时,能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲…(14分)

点评 本题考查轨迹方程,考查正弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若AC=5,BC=6,sinA=$\frac{3}{5}$,则角B的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,AD=$\sqrt{2}$,PD⊥平面ABCD,E,F分别是CD,PB的中点.
求证:(Ⅰ)CF∥平面PAE;
(Ⅱ)平面PAE⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,tanA=$\frac{1}{3}$,tanC=$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}是等比数列,前n项和为Sn,若a1+a2=2,a2+a3=-1,则$\lim_{n→∞}{S_n}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A={x||x-2|≤3},B={x|x<t},若A∩B=∅,则实数t的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.要得到y=sin$\frac{x}{2}$的图象,只需将函数y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象向右平移$\frac{π}{2}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=1,2b-$\sqrt{3}$c=2acosC,sinC=$\frac{\sqrt{3}}{2}$,则△ABC的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.$(α为参数),M为C1上的动点,P点满足$\overrightarrow{OP}=2\overrightarrow{OM}$,设点P的轨迹为曲线C2
(1)求C1,C2的极坐标方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线$θ=\frac{π}{3}$与C1的异于极点的交点为A,与C2的异于极点的交点为B,求线段AB的长度.

查看答案和解析>>

同步练习册答案