精英家教网 > 高中数学 > 题目详情
8.在△ABC中,若AC=5,BC=6,sinA=$\frac{3}{5}$,则角B的大小为30°.

分析 运用正弦定理可得$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,代入数据,可得sinB,再由B<A,即可得到所求角B.

解答 解:在△ABC中,若AC=5,BC=6,sinA=$\frac{3}{5}$,
由正弦定理可得,$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,
即为sinB=$\frac{ACsinA}{BC}$=$\frac{5×\frac{3}{5}}{6}$=$\frac{1}{2}$,
由AC<BC,可得B<A,
则B=30°(150°舍去),
故答案为:30°.

点评 本题考查解三角形的正弦定理的运用,同时考查三角形的边角关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{{{a}_{n}}^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$(n∈N*
(Ⅰ)求证:an+1<an
(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{3x-1,x≥0}\end{array}\right.$,则f[f(-1)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则下列关系可以成立的而是(  )
A.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$B.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$)C.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$D.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某供货商计划将某种大型节日商品分别配送到甲、乙两地销售.据以往数据统计,甲、乙两地该商品需求量的频率分布如下:
甲地需求量频率分布表示:
需求量456
频率0.50.30.2
乙地需求量频率分布表:
需求量345
频率0.60.30.1
以两地需求量的频率估计需求量的概率
(Ⅰ)若此供货商计划将10件该商品全部配送至甲、乙两地,为保证两地不缺货(配送量≥需求量)的概率均大于0.7,问该商品的配送方案有哪几种?
(Ⅱ)已知甲、乙两地该商品的销售相互独立,该商品售出,供货商获利2万元/件;未售出的,供货商亏损1万元/件.在(Ⅰ)的前提下,若仅考虑此供货商所获净利润,试确定最佳配送方案.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.《算学启蒙》值中国元代数学家朱世杰撰写的一部数学启蒙读物,包括面积、体积、比例、开方、高次方程等问题,《算学启蒙》中有关于“松竹并生”的问题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”,如图是源于其思想的一个程序框图,若输入a,b分别为8,2,则输出的n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,一辆装载集装箱的载重卡车高为3米,宽为2.2米,欲通过断面上部为抛物线形,下部为矩形ABCD的隧道.已知拱口宽AB等于拱高EF的4倍,AD=1米.若设拱口宽度为t米,则能使载重卡车通过隧道时t的最小整数值等于9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x-3y+4|的最大值为(  )
A.3B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E处按$\overrightarrow{EP}$方向释放机器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.
已知AB=18米,E为AB中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记$\overrightarrow{EP}$与$\overrightarrow{EB}$的夹角为θ.
(1)若θ=60°,AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到0.1°)
(2)如何设计矩形区域ABCD的宽AD的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲?

查看答案和解析>>

同步练习册答案