精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则下列关系可以成立的而是(  )
A.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$B.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$)C.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$D.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$

分析 设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,分别假设A,B,C,D成立,根据向量的数量积公式和向量的垂直即可判断.

解答 解:|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ
若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=4-2cosθ=0,解得cosθ=2,显然θ不存在,故A不成立,
若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-${\overrightarrow{b}}^{2}$=4-1=3≠0,故B不成立,
若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=${\overrightarrow{b}}^{2}$+$\overrightarrow{a}$•$\overrightarrow{b}$=1+2cosθ=0,解得cosθ=-$\frac{1}{2}$,即θ=$\frac{2π}{3}$,故C成立,
若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow{b}$=4+2cosθ=0,解得cosθ=-2,显然θ不存在,故D不成立,
故选:C.

点评 本题主要考查了平面向量数量积的定义以及向量的垂直,考查了平面向量数量积的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|+|x+1|-2.
(1)求不等式f(x)≥1的解集;
(2)若关于x的不等式f(x)≥a2-a-2在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为p,两天是否下雨互不影响,若两天都下雨的概率为0.04.
周一无雨无雨有雨有雨
周二无雨有雨无雨有雨
收益10万元8万元5万元
(1)求p及基地的预期收益;
(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为11万元,有雨时收益为6万元,且额外聘请工人的成本为5000元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=a|x-1|-|x+1|.其中a>1
(Ⅰ)当a=2时,求不等式f(x)≥3的解集;
(Ⅱ)若函数y=f(x)的图象与直线y=1围成三角形的面积为$\frac{27}{8}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}满足a1=-1,an+1+2an=3.
(Ⅰ)证明{an-1}是等比数列,并求数列{an}通项公式;
(Ⅱ)已知符号函数sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,设bn=an•sgn{an},求数列{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,若k∈(n,n+1),n∈Z,则n=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若AC=5,BC=6,sinA=$\frac{3}{5}$,则角B的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:
①函数y=cos($\frac{5π}{2}$-2x)是偶函数;
②函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上是增函数;
③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)图象的一条对称轴;
④将函数y=cos(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{3}$单位,得到函数y=cos2x的图象,其中正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,tanA=$\frac{1}{3}$,tanC=$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

同步练习册答案