分析 (I)an+1+2an=3,可得an+1-1=-2(an-1).利用等比数列的定义通项公式即可得出.
(II)bn=an•sgn{an}=$\left\{\begin{array}{l}{{2}^{n}+1,n为偶数}\\{{2}^{n}-1,n为奇数}\end{array}\right.$,再利用等比数列的求和公式即可得出.
解答 (I)证明:∵an+1+2an=3,∴an+1-1=-2(an-1).a1-1=-2.
∴{an-1}是等比数列,首项与公比都为-2.
∴an-1=(-2)n,可得an=(-2)n+1.
(II)解:bn=an•sgn{an}=$\left\{\begin{array}{l}{{2}^{n}+1,n为偶数}\\{{2}^{n}-1,n为奇数}\end{array}\right.$,
∴数列{bn}的前100项和=(2-1)+(22+1)+(23-1)+(24+1)+…+(299-1)+(2100+1)
=2+22+…+2100
=$\frac{2({2}^{100}-1)}{2-1}$=2101-2.
点评 本题考查了等比数列的定义通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{\sqrt{21}}}{3}$ | C. | $\frac{{\sqrt{7}}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$ | B. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$) | C. | ($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$ | D. | ($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 需求量 | 4 | 5 | 6 |
| 频率 | 0.5 | 0.3 | 0.2 |
| 需求量 | 3 | 4 | 5 |
| 频率 | 0.6 | 0.3 | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com