| 周一 | 无雨 | 无雨 | 有雨 | 有雨 |
| 周二 | 无雨 | 有雨 | 无雨 | 有雨 |
| 收益 | 10万元 | 8万元 | 5万元 | |
分析 (1)由两天都下雨的概率求出p的值,写出基地收益X的可能取值,计算对应的概率;
写出该基地收益X的分布列,计算数学期望E(X);
(2)设基地额外聘请工人时的收益为Y万元,计算数学期望E(Y),
比较E(X)、E(Y)即可得出结论.
解答 解:(1)两天都下雨的概率为(1-p)2=0.04,
解得p=0.8;
该基地收益X的可能取值为10,8,5;(单位:万元)
则:P(X=10)=0.64,
P(X=8)=2×0.8×0.2=0.32,
P(X=5)=0.04;
所以该基地收益X的分布列为:
| X | 10 | 8 | 5 |
| P | 0.64 | 0.32 | 0.04 |
点评 本题考查了离散型随机变量的分布列与数学期望的应用问题,也考查了数学期望的计算问题,是综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $a>2\sqrt{2}$ | B. | $2\sqrt{2}<a<3$ | C. | a>3 | D. | $3<a<2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{\sqrt{21}}}{3}$ | C. | $\frac{{\sqrt{7}}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{1}{2}$i | C. | $±\frac{1}{2}$ | D. | $±\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$ | B. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$) | C. | ($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$ | D. | ($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com