精英家教网 > 高中数学 > 题目详情
7.某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为p,两天是否下雨互不影响,若两天都下雨的概率为0.04.
周一无雨无雨有雨有雨
周二无雨有雨无雨有雨
收益10万元8万元5万元
(1)求p及基地的预期收益;
(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为11万元,有雨时收益为6万元,且额外聘请工人的成本为5000元,问该基地是否应该额外聘请工人,请说明理由.

分析 (1)由两天都下雨的概率求出p的值,写出基地收益X的可能取值,计算对应的概率;
写出该基地收益X的分布列,计算数学期望E(X);
(2)设基地额外聘请工人时的收益为Y万元,计算数学期望E(Y),
比较E(X)、E(Y)即可得出结论.

解答 解:(1)两天都下雨的概率为(1-p)2=0.04,
解得p=0.8;
该基地收益X的可能取值为10,8,5;(单位:万元)
则:P(X=10)=0.64,
P(X=8)=2×0.8×0.2=0.32,
P(X=5)=0.04;
所以该基地收益X的分布列为:

X1085
P0.640.320.04
则该基地的预期收益为E(X)=10×0.64+8×0.32+5×0.04=9.16(万元),
所以,基地的预期收益为9.16万元;
(2)设基地额外聘请工人时的收益为Y万元,
则其预期收益:E(Y)=11×0.8+6×0.2-0.5=9.5(万元);
此时E(Y)>E(X),所以该基地应该外聘工人.

点评 本题考查了离散型随机变量的分布列与数学期望的应用问题,也考查了数学期望的计算问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知$f(x)=\frac{1-x}{1+x}$,数列{an}满足${a_1}=\frac{1}{2}$,对于任意n∈N*都满足an+2=f(an),且an>0,若a20=a18,则a2016+a2017的值为$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{{{a}_{n}}^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$(n∈N*
(Ⅰ)求证:an+1<an
(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}x+1,0≤x≤1\\ \frac{1}{2}sin({\frac{π}{4}x})+\frac{3}{2},1<x≤4\end{array}\right.$,若不等式f2(x)-af(x)+2<0在x∈[0,4]上恒成立,则实数a取值范围是(  )
A.$a>2\sqrt{2}$B.$2\sqrt{2}<a<3$C.a>3D.$3<a<2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:$\frac{x^2}{{a{\;}^2}}-\frac{y^2}{{b{\;}^2}}$=1的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某一条渐近线交于两点P,Q,若∠PAQ=$\frac{π}{3}$且$\overrightarrow{OQ}=5\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.2B.$\frac{{\sqrt{21}}}{3}$C.$\frac{{\sqrt{7}}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,若复数z满足z2=-4,则$\frac{1}{z}$=(  )
A.-$\frac{1}{2}$B.-$\frac{1}{2}$iC.$±\frac{1}{2}$D.$±\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{3x-1,x≥0}\end{array}\right.$,则f[f(-1)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则下列关系可以成立的而是(  )
A.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$B.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$)C.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$D.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x-3y+4|的最大值为(  )
A.3B.5C.6D.8

查看答案和解析>>

同步练习册答案