分析 (Ⅰ)利用作差法结合配方法即可证明an+1<an;
(Ⅱ)由1-an+1=1-$\frac{{{a}_{n}}^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$=$\frac{1-{a}_{n}}{{{a}_{n}}^{2}-{a}_{n}+1}$,取倒数即可得到${a}_{n}=\frac{1}{1-{a}_{n}}-\frac{1}{1-{a}_{n+1}}$,累加后放缩得答案.
解答 证明:(Ⅰ)∵${{a}_{n}}^{2}-{a}_{n}+1=({a}_{n}-\frac{1}{2})^{2}+\frac{3}{4}$>0,且a1=$\frac{1}{2}$>0,∴an>0,
∴an+1-an=$\frac{{{a}_{n}}^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$-an=$\frac{-{a}_{n}({a}_{n}-1)^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$<0.
∴an+1<an;
(Ⅱ)∵1-an+1=1-$\frac{{{a}_{n}}^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$=$\frac{1-{a}_{n}}{{{a}_{n}}^{2}-{a}_{n}+1}$,
∴$\frac{1}{1-{a}_{n+1}}=\frac{{{a}_{n}}^{2}-{a}_{n}+1}{1-{a}_{n}}$=$\frac{1}{1-{a}_{n}}-{a}_{n}$.
∴${a}_{n}=\frac{1}{1-{a}_{n}}-\frac{1}{1-{a}_{n+1}}$,
则${a}_{1}+{a}_{2}+…+{a}_{n}=2-\frac{1}{1-{a}_{n+1}}$,
又an>0,
∴${S}_{n}={a}_{1}+{a}_{2}+…+{a}_{n}=2-\frac{1}{1-{a}_{n+1}}<1$.
点评 本题考查数列递推式,训练了作差法与放缩法证明数列不等式,是中档题.
科目:高中数学 来源: 题型:解答题
| x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 0 | 2 | 3 | 2 | 0 | -1 | 0 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2-i | B. | 2-i | C. | $1-\sqrt{2}i$ | D. | $-1-\sqrt{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 周一 | 无雨 | 无雨 | 有雨 | 有雨 |
| 周二 | 无雨 | 有雨 | 无雨 | 有雨 |
| 收益 | 10万元 | 8万元 | 5万元 | |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com