分析 (Ⅰ)根据线面平行的判定定理即可证明CF∥平面PAE;
(Ⅱ)根据线面垂直的判定定理证明AE⊥平面PBD,即可证明平面PAE⊥平面PBD.
解答
证明:(Ⅰ)取AB的中点N,连接FN,EN,
在△PAB中,FN为中位线,
∴FN∥AB,FN=$\frac{1}{2}$AB,
∵CE=$\frac{1}{2}$AB,CE∥AB,
∴CE∥FN,CE=FN,
∴四边形CENF为平行四边形,
∴CF∥EN,
∵EN?面PAE,CF?面PAE,
∴CF∥平面PAE;
(Ⅱ)∵PD⊥平面ABCD,AE?平面ABCD,
∴PD⊥AE.
设AE∩BD=M,∵E为CD的中点,
∴$\frac{DE}{AB}=\frac{DM}{BM}=\frac{EM}{AM}=\frac{1}{2}$,
则△DME∽△AMB,
在矩形ABCD中,AE=$\sqrt{3}$,BD=$\sqrt{6}$,
∴DM2+EM2=$\frac{1}{3}+\frac{2}{3}=1$=DE2,
即△DME为直角三角形,即AE⊥BD,
∵PD∩BD=D,PD?面PBD,BD?面PBD,
∴AE⊥平面PBD,
∵AE?平面PAE,
∴平面PAE⊥平面PBD.
点评 本题主要考查空间线面平行和线面垂直、面面垂直的判定,根据相应的判定定理是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{2}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\sqrt{10}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2] | B. | [-1,2] | C. | [-1,15] | D. | [2,15] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com