精英家教网 > 高中数学 > 题目详情
7.$f(x)=\frac{1}{4}{x^2}+cosx$,f'(x)为f(x)的导函数,则f'(x)的是(  )
A.B.C.D.

分析 求出导函数,利用导函数的解析式,判利用还是的奇偶性已经特殊点断函数的图象即可.

解答 解:$f(x)=\frac{1}{4}{x^2}+cosx$,∴f'(x)=$\frac{1}{2}x-sinx$,f′(x)是奇函数,排除B,D.
当x=$\frac{π}{4}$时,f'(x)=$\frac{π}{8}-\frac{\sqrt{2}}{2}$<0,排除C.
故选:A.

点评 本题考查函数的图象的判断,导数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.给出下列命题:
①函数y=cos($\frac{5π}{2}$-2x)是偶函数;
②函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上是增函数;
③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)图象的一条对称轴;
④将函数y=cos(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{3}$单位,得到函数y=cos2x的图象,其中正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,tanA=$\frac{1}{3}$,tanC=$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A={x||x-2|≤3},B={x|x<t},若A∩B=∅,则实数t的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.要得到y=sin$\frac{x}{2}$的图象,只需将函数y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象向右平移$\frac{π}{2}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某射手射击1次,命中目标的概率为0.9,他连续射击4次,且各次射击是否命中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率为0.93×0.1;
③他至少击中目标1次的概率是1-(0.1)4
④他最后一次才击中目标的概率是$C_4^1×0.9×{0.1^3}$
其中正确结论的序号是①③  (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=1,2b-$\sqrt{3}$c=2acosC,sinC=$\frac{\sqrt{3}}{2}$,则△ABC的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司要推出一种新产品,分6个相等时长的时段进行试销,并对卖出的产品进行跟踪以及收集顾客的评价情况(包括产品评价和服务评价),在试销阶段共卖出了480件,通过对所卖出产品的评价情况和销量情况进行统计,一方面发现对该产品的好评率为$\frac{5}{6}$,对服务的好评率为0.75,对产品和服务两项都没有好评有30件,另一方面发现销量和单价有一定的线性相关关系,具体数据如下表:
 时段 1 2 3 4 5 6
 单价x(元) 800 820 840 860 880 900
 销量y(件) 90 84 83 80 75 68
(1)能否在犯错误的概率不超过0.001的前提下,认为产品好评和服务好评有关?
(2)该产品的成本是500元/件,预计在今后的销售中,销量和单价仍然服从这样的线性相关关系($\widehat{y}$=$\widehat{b}$x+$\widehat{a}$),该公司如果想获得最大利润,此产品的定价应为多少元?
(参考公式:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中系数计算公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$;K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(参考数据
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
$\sum_{n=1}^{6}$xiyi=406600,$\sum_{n=1}^{6}$xi2=4342000)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC是正三角形,O是△ABC的中心,D和E分别是边AB和AC的中点,若$\overrightarrow{OA}=x\overrightarrow{OD}+y\overrightarrow{OE}$,则x+y=4.

查看答案和解析>>

同步练习册答案