精英家教网 > 高中数学 > 题目详情
7.如图是秦九韶算法的一个程序框图,则输出的S为(  )
A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值

分析 模拟程序的运行,依次写出每次循环得到的k,S的值,当k=0时,不满足条件k>0,退出循环,输出S的值为a0+x0(a1+x0(a2+a3x0)).

解答 解:模拟程序的运行,可得
k=3,S=a3
满足条件k>0,执行循环体,k=2,S=a2+a3x0
满足条件k>0,执行循环体,k=1,S=a1+x0(a2+a3x0),
满足条件k>0,执行循环体,k=0,S=a0+x0(a1+x0(a2+a3x0)),
不满足条件k>0,退出循环,输出S的值为a0+x0(a1+x0(a2+a3x0)).
故选:C.

点评 本题主要考查了循环结构的程序框图的应用,依次正确写出每次循环得到的S,k的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知△ABC是正三角形,O是△ABC的中心,D和E分别是边AB和AC的中点,若$\overrightarrow{OA}=x\overrightarrow{OD}+y\overrightarrow{OE}$,则x+y=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为$\frac{1}{5}$,则图中直角三角形中较大锐角的正弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我们知道:“平面中到定点等于定长的点轨迹是圆”拓展至空间:“空间中到定点的距离等于定长的点的轨迹是球”,类似可得:已知A(-1,0,0),B(1,0,0),则点集{P(x,y,z)||PA|-|PB|=1}在空间中的轨迹描述正确的是(  )
A.以A,B为焦点的双曲线绕轴旋转而成的旋转曲面
B.以A,B为焦点的椭球体
C.以A,B为焦点的双曲线单支绕轴旋转而成的旋转曲面
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图半圆柱OO1的底面半径和高都是1,面ABB1A1是它的轴截面(过上下底面圆心连线OO1的平面),Q,P分别是上下底面半圆周上一点.
(1)证明:三棱锥Q-ABP体积VQ-ABP≤$\frac{1}{3}$,并指出P和Q满足什么条件时有AP⊥BQ
(2)求二面角P-AB-Q平面角的取值范围,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=5+5cost\\ y=4+5sint\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a、b、c是△ABC的三条边长,则下列结论中正确的个数是(  )
①对于一切x∈(-∞,1)都有f(x)>0;
②存在x>0使ax,bx,cx不能构成一个三角形的三边长;
③若△ABC为钝角三角形,则存在x∈(1,2),使f(x)=0.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2,3,4的红球,2个编号为A、B的黑球,现从中任取2个小球.
(Ⅰ)求所取取2个小球都是红球的概率;
(Ⅱ)求所取的2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市高二年级学生进行数学竞赛,竞赛分为初赛和决赛,规定成绩在110分及110分以上的学生进入决赛,110分以下的学生则被淘汰,现随机抽取500名学生的初赛成绩按[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]做成频率副本直方图,如图所示:(假设成绩在频率分布直方图中各段是均匀分布的)
(1)求这500名学生中进入决赛的人数,及进入决赛学生的平均分(结果保留一位小数);
(2)用频率估计概率,在全市进入决赛的学生中选取三人,其中成绩在[130,150]的学生数为X,试写出X的分布列,并求出X的数学期望及方差.

查看答案和解析>>

同步练习册答案