精英家教网 > 高中数学 > 题目详情
已知f(α)=
sin(α-
π
2
)cos(
2
-α)tan(2π-α)
tan(-α-π)sin(π+α)

(1)若α是第三象限角,sinα=-
1
5
,求f(α)的值;
(2)若α=-
34π
3
,求f(α)的值.
分析:利用诱导公式化简f(α)得到最简结果,
(1)由α为第三象限,sinα的值小于0,得到cosα的值小于0,由sinα的值,利用同角三角函数间的基本关系求出cosα的值,即可确定出f(α)的值;
(2)将α的度数代入f(α)中,利用诱导公式化简即可得到结果.
解答:解:f(α)=
-cosα•(-sinα)•(-tanα)
-tanα•(-sinα)
=-cosα,
(1)∵α是第三象限角,sinα=-
1
5
<0,
∴cosα<0,
∴cosα=-
1-sin2α
=-
2
6
5

则f(α)=-cosα=
2
6
5

(2)将α=-
34π
3
代入得:f(-
34π
3
)=-cos(-
34π
3
)=-cos(11π+
π
3
)=-cos(π+
π
3
)=cos
π
3
=
1
2
点评:此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(α)=
sin(-α-
2
)cos(
2
-α)tan2(π-α)
cos(
π
2
-α)sin(
π
2
+α)

(1)化简f(α)
(2)若sinα是方程5x2-7x-6=0的根,且α是第三象限的角,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(
π
2
-α)cos(2π-α)tan(-α+π)
tan(π+α)sin(-π-α)

(1)化简f(α);(2)若cos(α-
π
2
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)

(1)化简f(α);               
(2)已知tanα=3,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(π-α)•cos(2π-α)•tan(-π-α)
sin(-π-α)

(1)求f(α);  
(2)若α是第三象限角,且cos(α-
2
)=
1
5
,则f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(Ⅰ)化简f(α);
(Ⅱ)若α是第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

同步练习册答案