精英家教网 > 高中数学 > 题目详情
11.函数y=log4(2x+3-x2)值域为(-∞,1].

分析 运用复合函数的单调性分析函数最值,再通过配方求得值域.

解答 解:设u(x)=2x+3-x2=-(x-1)2+4,
当x=1时,u(x)取得最大值4,
∵函数y=log4x为(0,+∞)上的增函数,
∴当u(x)取得最大值时,原函数取得最大值,
即ymax=log4u(x)max=log44=1,
因此,函数y=log4(2x+3-x2)的值域为(-∞,1],
故填:(-∞,1].

点评 本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知Z1,Z2,Z3∈C,下列结论正确的是(  )
A.若Z21+Z22+Z23=0,则Z1=Z2=Z3=0B.若Z21+Z22+Z23>0,则Z21+Z22>-Z23
C.若Z21+Z22>-Z23,则Z21+Z22+Z23>0D.若$\overline{{Z}_{1}}$=-Z1,则Z1为纯虚数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)在点P(1,f(1))的切线方程为y=2x+1,则f′(1)=(  )
A.2B.3C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x∈R,n∈N*,规定:$H_x^n=x(x+1)(x+2)…(x+n-1)$,例如:$H_{-4}^4=(-4)•(-3)•(-2)•(-1)=24$,则函数$f(x)=x•H_{x-1}^3$的图象(  )
A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=cos2(2x-$\frac{π}{6}$)+sin2(2x+$\frac{π}{6}$)-1是(  )
A.周期为π的奇函数B.周期为$\frac{π}{2}$的奇函数
C.周期为π的偶函数D.周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.淮北市文明创建活动正在轰轰烈烈的开展,第三方评估机构拟了解我市中小学生“社会主义核心价值观”掌握情况,已知不同学段学生掌握情况有差异,现从中小学生中抽取部分学生进行调查,在下面的抽样方法中,最合理的抽样方法是(  )
A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ln(|x|+1)+$\sqrt{{x^2}+1}$,则使得f(x)>f(2x-1)的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.(1,+∞)D.$({-∞,\frac{1}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个椭圆的半焦距为2,离心率e=$\frac{2}{3}$,那么它的长轴长是(  )
A.3B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=loga(6-ax)在[0,1]上为减函数,则a的取值范围是(  )
A.(0,1)B.(1,6]C.(1,6)D.[6,+∞)

查看答案和解析>>

同步练习册答案