精英家教网 > 高中数学 > 题目详情
2.已知函数y=f(x)在点P(1,f(1))的切线方程为y=2x+1,则f′(1)=(  )
A.2B.3C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 根据导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率.结合切线的方程即可得到所求值.

解答 解:由导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率.
可得在点P(1,f(1))的切线斜率为2,即f′(1)=2.
故选:A.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$表示的平面区域是一个三角形,则a的取值范围是(  )
A.[$\frac{4}{3}$,+∞)B.(0,1]C.[1,$\frac{4}{3}$]D.(0,1]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的面积S满足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函数f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn={1,2,…,n},若X是Sn的子集,把X中的所有数的和称为X的“容量”(规定φ的容量为0),若X的容量为奇(偶)数,则称X为Sn的奇(偶)子集.
(1)求证:Sn的奇子集与偶子集个数相等;
(2)求证:当n≥3时,Sn的所有奇子集的容量之和等于所有偶子集的容量之和;
(3)求n≥3时Sn的所有奇子集的容量和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)为减函数,则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.( $\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列不等式:
(1)-2x2+x<-3
(2)x2-x+$\frac{1}{4}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知下列命题
①b2=ac,则a,b,c成等比数列;
②若{an}为等差数列,且常数c>0,则数列{can}为等比数列;
③若{an}为等比数列,且常数c>0,则数列{can}为等比数列;
④常数列既为等差数列,又是等比数列.
其中,真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log4(2x+3-x2)值域为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.幂函数f(x)的图象过点$(2,\frac{1}{4})$,则f(x)的一个单调递减区间是(  )
A.(0,+∞)B.[0,+∞)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

同步练习册答案