精英家教网 > 高中数学 > 题目详情
若△ABC的面积为2
3
,且b=2,A=60°,
(1)求c和a的值;
(2)求
b
sinB
的值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)先根据三角形的面积求得c的值,进而根据余弦定理求得a.
(2)由正弦定理直接求得
b
sinB
的值.
解答: 解:(1)∵S=
1
2
bcsinA=
1
2
•2•c•
3
2
=2
3

∴c=4.
a=
b2+c2-2bccosA
=
4+16-2×2×4×
1
2
=2
3

(2)由正弦定理知
b
sinB
=
a
sinA
=
2
3
3
2
=4.
点评:本题主要考查了正弦定理和余弦定理的应用.正弦定理和余弦定理时解决三角形边角问题的重要工具.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,an=
1
4n2-1
,则S20=(  )
A、
20
41
B、
10
41
C、
10
21
D、
40
41

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形OABC的顶点O为原点,AB边所在直线的方程为3x+4y-25=0,顶点B的纵坐标为10.
(Ⅰ)求OA,OC边所在直线的方程;
(Ⅱ)求矩形OABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx+sin(x+
π
3
).求f(x)的最小值,并求使f(x)取得最小值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为非负数的数列{an},a1=0,前n项和为Sn,点(an,an+1)在函数f(x)=
x2+
9
4
-
1
2
的图象上.
(1)证明:对一切n∈N*,an<an+1<2;
(2)证明:Sn<2n+6.

查看答案和解析>>

科目:高中数学 来源: 题型:

一只口袋中装有形状、大小都相同的4只小球,其中2只红球,1只白球、1只黑球.
(1)若从中随机摸出1只球,求这只球为红球的概率;
(2)若从中一次随机摸出2只球,求这2只球颜色不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某地区用电高峰期居民的用电量,抽取一个容量为200的样本,记录某天各户居民的用电量(单位:度),制成频率分布直方图,如图.
(1)求样本数据落在区间[10,12]内的频数;
(2)若打算从[4,6)和[6,8)这两组中按分层抽样抽取4户居民作进一步了解,问各组分别抽取多少人?
(3)在(2)的基础上,为答谢上述4户居民的参与配合,从中再随机选取2户居民发放奖品,求这2户居民来不同组的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
(cos2x-sin2x)-2cos2(x+
π
4
)+1的定义域为[0,
π
2
].
(1)求f(x)的最小值.
(2)△ABC中,A=45°,b=3
2
,边a的长为函数3-
3
f(x)的最大值,求角B大小及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(ax+2b)6的展开式中x3与x4的系数之比为4:3,其中a>0,b≠0.
(1)求展开式中系数最大的项;
(2)令F(a,b)=
b3+16
a
,求F(a,b)的最小值.

查看答案和解析>>

同步练习册答案