精英家教网 > 高中数学 > 题目详情
设函数f(x)=sinx+sin(x+
π
3
).求f(x)的最小值,并求使f(x)取得最小值的x的集合.
考点:三角函数中的恒等变换应用
专题:常规题型,三角函数的图像与性质
分析:先利用两角和的正弦公式展开,然后逆用两角和的正弦公式化成正弦型函数的标准形式求最值.
解答: 解:f(x)=sinx+sin(x+
π
3

=sinx+sinxcos
π
3
+cosxsin
π
3

=
3
2
sinx+
3
2
cosx

=
3
sin(x+
π
6

∴当x+
π
6
=
2
+2kπ
(k∈Z),即x=
3
+2kπ
(k∈Z),
f(x)取最小值-
3

所以函数f(x)的最小值为-
3

此时x的集合{x|x=
3
+2kπ
,(k∈Z)}.
点评:本题考查了两角和的正弦公式的运用及三角函数的最值,解题的关键是利用公式把函数化成正弦型函数的标准形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了得到函数y=sin3x+cos3x的图象,可以将函数y=
2
sin3x的图象(  )
A、向右平移
π
4
个单位
B、向左平移
π
4
个单位
C、向右平移
π
12
个单位
D、向左平移
π
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,游乐场中的摩天轮匀速旋转,其最低点离地面5米,如果以你从最低点登上摩天轮的时刻开始计时,那么你与地面的距离y(m)随时间x(min)变化的关系将如图2所示(该图象近似于y=Asin(ωx+φ)+b(A>0,ω>0,-π≤φ≤0)的图象).

(Ⅰ)求出y(m)和x(min)的函数关系式;
(Ⅱ)当你第三次距离地面65米时,用了多少时间?
(Ⅲ)当你登上摩天轮4分钟后,你的朋友也在最低点登上摩天轮,请直接写出你登上摩天轮多少分钟后,第一次与你的朋友处在同一高度?

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意函数f(x),其定义域为D,可按如图所示,构造一个数列发生器,要求输入初始数据x0∈D,现定义f(x)=
4x-2
x+1
,解答以下问题:
(1)若输入x0=
49
65
,则由数列发生器产生数列{xn},写出{xn}的所有项;
(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+Sn-1=0,其中Sn为{an}的前n项和,又bn+5log2(1-Sn)=t,t∈N*,数列{cn}满足cn=an•bn.                                                       
(1)若{cn}是递减数列,求t的最小值;                                                 
(2)在(1)的条件下,当t取最小值时,求数列{cn}的前n项和Tn;                       
(3)是否存在正整数k,使ck,ck+1,ck+2这三项按某种顺序排列后成等比数列?若存在,求出k,t的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

假设某设备的使用年限x(年)与所支出的维修费用y(万元)之间有如下的统计数据:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
(1)求y与x之间的回归直线方程;(参考数据:22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
(2)当使用年限为10年时,估计维修费用是多少?
附:线性回归方程
y
=
b
x+
a
中系数计算公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
.
y
表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的面积为2
3
,且b=2,A=60°,
(1)求c和a的值;
(2)求
b
sinB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A、B两点,且
OA
OB
=2,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为(0,-2),记直线CA、CB的斜率分别为k1,k2,证明:k12+k22-2k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

包含甲在内的甲、乙、丙3个人练习传球,设传球n次,每人每次只能传一下,首先从甲手中传出,第n次仍传给甲,共有多少种不同的方法?为了解决上述问题,设传球n次,第n次仍传给甲的传球方法种数为an;设传球n次,第n次不传给甲的传球方法种数为bn.根据以上假设回答下列问题:
(1)求出a1,a2,b1的值;
(2)根据你的理解写出an+1与bn的关系式;
(3)求a5的值及通项公式an

查看答案和解析>>

同步练习册答案