精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。
(I)求证:C1D//平面ABB1A1
(II)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。

(1)略
(2)
(3)
(I)证明:四棱柱ABCD—A1B1C1D1中,BB1//CC1
面ABB1A1,所以CC1//平面ABB1A1,              …………2分
ABCD是正方形,所以CD//AB,
又CD面ABB1A1,AB面ABB1A1,所以CD//平面ABB1A1,…………3分
所以平面CDD1C1//平面ABB1A1
所以C1D//平面ABB1A1                                  …………4分
(II)解:ABCD是正方形,AD⊥CD
因为A1D⊥平面ABCD,
所以A1D⊥AD,A1D⊥CD,
如图,以D为原点建立空间直角坐标系D—xyz,           …………5分
中,由已知可得
所以


 

            …………6分
因为A1D⊥平面ABCD,
所以A1D⊥平面A1B1C1D1
A1D⊥B1D1
又B1D1⊥A1C1
所以B1D1⊥平面A1C1D,                                 …………7分
所以平面A1­C1D的一个法向量为n=(1,1,0)            …………8分
与n所成的角为
                   
所以直线BD1与平面A1C1D所成角的正弦值为            …………9分
(III)解:平面A1C1A的法向量为 
 所以  
可得                           …………11分

所以二面角的余弦值为              …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,
(I)证明:C,D,F,E四点共面;
(II)设AB=BC=BE,求二面角A—ED—B的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥的底面为菱形,平面分别为的中点。
(I)求证:平面
  (Ⅱ)求三棱锥的体积;
(Ⅲ)求平面与平面所成的锐二面角大小的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求三棱锥E-ACD1的体积;
(3)AE等于何值时,二面角D1—EC—D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.
(1)、求证:
(2)、求证:平面平面
(3)、求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)求证:平面平面
(2)求正方形的边长;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,在四棱台中, 底面ABCD是正方形,且底面 , .
(1)求异面直线所成角的余弦值;
(2)试在平面中确定一个点,使得平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,ABCD-A1B1C1D1为正方体,下面结论错误的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.异面直线ADCB所成的角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体的棱长为,点在线段上,点在线段上,点在线段上,且的中点,则四面体的体积(   )
A.与有关,与无关B.与无关,与无关
C.与无关,与有关D.与有关,与有关

查看答案和解析>>

同步练习册答案