精英家教网 > 高中数学 > 题目详情
2.有五条线段,长度分别为1,3,5,7,9.从这五条线段中任取三条,则所取三条线段不能构成一个三角形的概率为(  )
A.$\frac{1}{2}$B.$\frac{7}{10}$C.$\frac{3}{10}$D.$\frac{9}{10}$

分析 利用列举法求出从这五条线段中任取三条所有基本事件的个数,再利用列举法求出不能构成三角形的有多少个,由此能求出取三条线段不能构成一个三角形的概率.

解答 解:从这五条线段中任取三条所有基本事件为:
(1,3,5),(1,3,7),(1,3,9),(1,5,7),
(1,5,9),(1,7,9),(3,5,7),(3,5,9),
(3,7,9),(5,7,9)共10个,
其中不能构成三角形的有:
(1,3,5),(1,3,7),(1,3,9),(1,5,7),
(1,5,9),(1,7,9),(3,5,9),共7个,
所以取三条线段不能构成一个三角形的概率为:P=$\frac{7}{10}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知水平放置的△ABC的平面直观图△A′BC′是边长为1的正三角形,那么△ABC的面积为(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{6}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设α:2≤x≤4,β:m+1≤x≤2m+4,m∈R,如果α是β的充分非必要条件,则m的范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图为y=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的图象的一段,其解析式y=$\sqrt{3}$$cos(2x+\frac{5π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,在极坐标中,已知圆C经过点$P(\sqrt{2},\frac{π}{4})$,圆心为直线$l:ρsin(θ-\frac{π}{3})=-\frac{{\sqrt{3}}}{2}$与极轴的交点.求:
(1)直线l的普通方程;
(2)圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若对任意t∈R,恒有|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,则∠C=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设等差数列{an}满足${a_1}=1,{a_n}>0({n∈{N^*}})$,其前n项和为Sn,若数列$\left\{{\sqrt{S_n}}\right\}$也为等差数列,则$\frac{{{S_{n+10}}}}{{{a_n}^2}}$的最大值为121.

查看答案和解析>>

同步练习册答案