精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极小值10,则的值为__________

【答案】-2

【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,

∴f′(x)=3x2+2ax+b,

f(x)=x3+ax2+bx﹣a2﹣7ax=1处取得极小值10,

∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,

∴a2+8a+12=0,

∴a=﹣2,b=1a=﹣6,b=9.

a=﹣2,b=1时,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),

<x<1时,f′(x)<0,当x>1时,f′(x)>0,

∴f(x)在x=1处取得极小值,与题意符合;

a=﹣6,b=9时,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)

x<1时,f′(x)>0,当1<x<3时,f′(x)<0,

∴f(x)在x=1处取得极大值,与题意不符;

=﹣2,

故答案为:﹣2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+log2x+b在区间( ,4)上有零点,则实数b的取值范围是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个班级共有105名学生,某次数学考试按照“大于等于85分为优秀,85分以下为非优秀”的原则统计成绩后,得到如下列联表。

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知从甲、乙两个班级中随机抽取1名学生,其成绩为优秀的概率为.

(1)请完成上面的列联表;

(2)能否有把握认为成绩与班级有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望

附:,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.

1)根据以上数据完成2×2列联表,并说明是否有95%的把握认为性别与喜欢运动有关;

喜欢运动

不喜欢运动

总计

总计

2)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.

附:K2

P(K2k0)

0.050

0.025

0.010

0.001

k0

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)求的单调区间;

2)求[-5 ]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2
(1)求角C的大小;
(2)若c= ,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(附加题,本小题满分10分,该题计入总分)

已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质

(1)若,判断是否具有性质,说明理由;

(2)若函数具有性质,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C经过点(3,6)且焦点在x轴上.

(1)求抛物线C的标准方程;

(2)直线l 过抛物线C的焦点F且与抛物线C交于AB两点,求AB两点间的距离.

查看答案和解析>>

同步练习册答案