精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2
(1)求角C的大小;
(2)若c= ,求a﹣b的取值范围.

【答案】
(1)解:在△ABC中,A+B+C=π,

∴sin2 = =

∵4sin2

∴2(1+cosC)﹣(2cos2C﹣1)= ,即4cos2C﹣4cosC+1=0,

解得cosC=

∵C∈(0,π),∴C=


(2)解:由正弦定理:

∵a﹣b=sinA﹣sinB=sinA﹣sin( )= sinA﹣ cosA=sin(A﹣ ).

∵A∈(0, ),∴A﹣ ∈(﹣ ).

∴sin(A﹣ )<sin =

sin(A﹣ )>sin(﹣ )=﹣

∴a﹣b的取值范围是(﹣


【解析】(1)使用三角形的内角和公式和二倍角公式化简式子,得出关于cosC的方程;(2)根据正弦定理得出a﹣b=sinA﹣sinB,消去B,得到关于A的三角函数,利用正弦函数的性质和A的范围求出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为梯形,,且

若点上一点且,证明:平面

二面角的大小;

在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+x).
(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y=g(x),当x≥0时,f(x)≤ ,求t的最小值;
(2)当n∈N*时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值10,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的极值;

2)设函数,求函数的单调区间;

3)若对内任意一个,都有 成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点(1,f(1))处的切线方程;

2)求经过点A1,3)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数.

)求的单调区间和极值;

)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为(
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象在点(00)处有相同的切线.

Ⅰ)求a的值;

Ⅱ)设,求函数上的最小值.

查看答案和解析>>

同步练习册答案