精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)= ,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为(
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥

【答案】B
【解析】解:由y=f(x)﹣kx=0得f(x)=kx,
作出函数f(x)和y=kx的图象如图,
由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,
当x≥0时,函数f(x)=ln(x+1)的导数f′(x)= ,则f′(0)=1,
当x<0时,函数f(x)=ex﹣1的导数f′(x)=ex , 则f′(0)=e0=1,
即当k=1时,y=x是函数f(x)的切线,
则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.
当k≥1时,函数f(x)和y=kx有1个交点,满足条件.
综上k的取值范围为k≤0或k≥1,
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两个班级共有105名学生,某次数学考试按照“大于等于85分为优秀,85分以下为非优秀”的原则统计成绩后,得到如下列联表。

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知从甲、乙两个班级中随机抽取1名学生,其成绩为优秀的概率为.

(1)请完成上面的列联表;

(2)能否有把握认为成绩与班级有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2
(1)求角C的大小;
(2)若c= ,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(附加题,本小题满分10分,该题计入总分)

已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质

(1)若,判断是否具有性质,说明理由;

(2)若函数具有性质,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最小正周期

(2)设,若上的值域为,求实数的值;

(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,线段上有两个动点则下列结论中正确的是__________

平面

②平面平面

③三棱锥的体积为定值

④存在某个位置使得异面直线成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的标准方程;

(2)是否存在斜率为的直线与椭圆相交于两点,使得 是椭圆的左焦点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C经过点(3,6)且焦点在x轴上.

(1)求抛物线C的标准方程;

(2)直线l 过抛物线C的焦点F且与抛物线C交于AB两点,求AB两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在区间上的最大值和最小值;

(2)若上是单调函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案