分析 (1)求导数,可得切线斜率,即可求出直线l的方程;
(2)利用g′(1)=2,g(1)=0,求出a,b,即可求函数g(x)的解析式.
解答 解:(1)∵f(x)=lnx+x,
∴f′(x)=$\frac{1}{x}$+1,
∴f′(1)=2,
∴直线l的方程为y=2x-2;
(2)∵g(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+ax+b,
∴g′(x)=x2+x+a,
∴g′(1)=2+a=2,∴a=0,
(1,0)代入g(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+ax+b,可得b=0,
∴g(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$.
点评 本题考查导数的运用:求切线的斜率,运用导数的几何意义和正确求导是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (-1,+∞) | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+y2=1 | B. | (x-1)2+y2=1 | C. | (x+1)2+y2=2 | D. | (x-1)2+y2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (-1,0) | C. | (0,1) | D. | [-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com