分析 设等差数列{an}的公差d≠0,由a1=1且a2,a4,a8成等比数列,可得${a}_{4}^{2}$=a2•a8,即(1+3d)2=(1+d)(1+7d),d≠0,解得d.可得bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用“裂项求和方法”可得:数列{bn}的前n项和Tn,再利用数列的单调性即可得出.
解答 解:设等差数列{an}的公差d≠0,∵a1=1且a2,a4,a8成等比数列,∴${a}_{4}^{2}$=a2•a8,
∴(1+3d)2=(1+d)(1+7d),化为:d2=d,d≠0,解得d=1.
∴an=1+(n-1)=n.
∴${b_n}=\frac{1}{{n({{a_n}+2})}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
则数列{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{3}{4}$-$\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$.
∵数列{-$\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$}单调递增.
∴T1≤Tn$<\frac{3}{4}$.
∴Tn的取值范围是 $[{\frac{1}{3},\frac{3}{4}})$.
故答案为:$[{\frac{1}{3},\frac{3}{4}})$.
点评 本题考查了“裂项求和法”、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,2x2-1≤0 | B. | ?x∉R,2x2-1≤0 | C. | ?x∈R,2x2-1≤0 | D. | ?x∉R,2x2-1≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com