精英家教网 > 高中数学 > 题目详情
6.“命题P:对任何一个数x∈R,2x2-1>0”的否定是(  )
A.?x∈R,2x2-1≤0B.?x∉R,2x2-1≤0C.?x∈R,2x2-1≤0D.?x∉R,2x2-1≤0

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,“命题P:对任何一个数x∈R,2x2-1>0”的否定是:?x∈R,2x2-1≤0.
故选:C.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足不等式f(x)<f(1)的x的取值范围是(  )
A.(-1,1)B.(-1,0)C.(0,1)D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合A={x||x-2|+|x+1|≥5},B=$\left\{{x|\frac{16}{x}>x}\right\}$,则A∩B=(  )
A.(-∞,-4)∪[3,4)B.(-4,-2]∪[3,4)C.(-∞,-2]∪[3,+∞)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.向量$\overrightarrow{m}$=(2sinx,-$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{x}{2}$-1,cos2x+1),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求函数f(x)的对称轴和对称中心;
(2)△ABC中内角A、B、C的对边分别为a,b,c,角B为锐角,若f(B)=0,b=2,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:y=kx+b(k≠0),且l不经过第三象限,若x∈[2,4]时,y∈[-1,1],则k,b的值分别为(  )
A.k=2,b=3B.k=-2,b=3C.k=1,b=1D.k=-1,b=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是公差不为0的等差数列,a1=1且a2,a4,a8成等比数列,若${b_n}=\frac{1}{{n({{a_n}+2})}}$,则数列{bn}的前n项和的取值范围是$[{\frac{1}{3},\frac{3}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,定义d(P1,P2)=max{|x1-x2|,|y1-y2|}为两点P1(x1,y1),P2(x2,y2)的“切比雪夫距离”,则点P(3,1)到直线y=2x-1上一点的“切比雪夫距离”的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某餐饮业培训学校对男、女各20名学员进行考评,考评成绩(满分100分)如茎叶图所示:
(I)若大于或等于80分为优秀学员,80分以下为非优秀学员,根据茎叶图填写2×2列联表,并判断能否有95%的把握认为学员的优秀与性别有关?
非优秀优秀总数
20
20
总数40
(Ⅱ)若从考评成绩95分以上(包括95分)的学员中任选两人代表学校参加上一级单位举办的服务比赛,求至少有一名男学员参加的概率.
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案