分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x-$\frac{π}{6}$),利用正弦函数的周期公式可求函数f(x)的最小正周期,由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可得单调递增区间,令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,解得图象的对称轴方程.
(Ⅱ)由x∈$[{-\frac{π}{12},\frac{π}{2}}]$,可求2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],利用正弦函数的性质可求函数f(x)在区间$[{-\frac{π}{12},\frac{π}{2}}]$上的最大值,最小值.
(Ⅲ)根据角的范围,利用同角三角函数基本关系式可求cos(2x0-$\frac{π}{6}$)的值,根据x0=(2x0-$\frac{π}{6}$)+$\frac{π}{6}$,利用两角和的余弦函数公式即可计算求值得解.
解答 解:(Ⅰ)∵$f(x)=sin({2x+\frac{π}{6}})+2sin({x-\frac{π}{4}})sin({x+\frac{π}{4}})$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+sin(2x-$\frac{π}{2}$)
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
∵2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z
∴可得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z
∴函数f(x)的单调递增区间为:[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z
∵令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,解得:x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
∴图象的对称轴方程为:x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
(Ⅱ)∵x∈$[{-\frac{π}{12},\frac{π}{2}}]$,
∴2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],可得sin(2x-$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],
∴函数f(x)在区间$[{-\frac{π}{12},\frac{π}{2}}]$上的最大值为1,最小值为-$\frac{\sqrt{3}}{2}$.
(Ⅲ)∵sin(2x0-$\frac{π}{6}$)=$\frac{3}{5}$,
∵${x_0}∈({\frac{π}{3},\frac{π}{2}})$,2x0-$\frac{π}{6}$∈($\frac{π}{2}$,$\frac{5π}{6}$),
∴cos(2x0-$\frac{π}{6}$)=-$\frac{4}{5}$,
∴cos2x0=cos[(2x0-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(2x0-$\frac{π}{6}$)×$\frac{\sqrt{3}}{2}$-sin(2x0-$\frac{π}{6}$)×$\frac{1}{2}$=-$\frac{4\sqrt{3}+3}{10}$.
点评 本题主要考查了三角函数恒等变换的应用,正弦函数的周期公式,正弦函数的性质,同角三角函数基本关系式,两角和的余弦函数公式的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+y2=1 | B. | (x-1)2+y2=1 | C. | (x+1)2+y2=2 | D. | (x-1)2+y2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4)∪[3,4) | B. | (-4,-2]∪[3,4) | C. | (-∞,-2]∪[3,+∞) | D. | (-∞,-2]∪(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com