已知抛物线
的焦点与椭圆
的右焦点重合.(Ⅰ)求抛物线
的方程;
(Ⅱ)动直线
恒过点
与抛物线
交于A、B两点,与
轴交于C点,请你观察并判断:在线段MA,MB,MC,AB中,哪三条线段的长总能构成等比数列?说明你的结论并给出证明.
(Ⅰ)
(Ⅱ)存在三线段MA、MC、MB的长成等比数列.
【解析】
试题分析:(Ⅰ)∵椭圆方程为:
,∴
,
所以
,椭圆的右焦点为(1 , 0),抛物线的焦点为(
,0),所以
=2,
则抛物线的方程为
(Ⅱ)设直线l:
,则C(-
,0),
由
得
,
因为△=
,所以k<1,
设A(x1,y1),B(x2,y2),则
,
,
所以由弦长公式得:
,
,
,
,
通过观察得:
=(
)·
=(
)·
=
.
若
=
,则
,不满足题目要求.
所以存在三线段MA、MC、MB的长成等比数列.
考点:直线与圆锥曲线的综合问题;抛物线的标准方程.
点评:本题考查椭圆的方程与性质,考查抛物线的方程,考查直线与武平县的位置关系,考查韦达定理的运用,考查等比数列的判定,属于中档题.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 9y2 |
| 8 |
|
| 2 |
| 3 |
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
| r1 |
| r2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2m |
| 3 |
| x2 |
| 4m2 |
| y2 |
| 3m2 |
| 2m |
| 3 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市浦东新区高三4月高考预测(二模)理科数学试卷(解析版) 题型:解答题
(1)设椭圆
:
与双曲线
:
有相同的焦点
,
是椭圆
与双曲线
的公共点,且
的周长为
,求椭圆
的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆
”的方程为
.设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;
(3)由抛物线弧
:
(
)与第(1)小题椭圆弧
:
(
)所合成的封闭曲线为“盾圆
”.设过点
的直线与“盾圆
”交于
两点,
,
且
(
),试用
表示
;并求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆
的长轴长是焦距的两倍,其左、右焦点依次为
、
,抛物线![]()
的准线与
轴交于
,椭圆
与抛物线
的一个交点为
.
(1)当
时,求椭圆
的方程;
(2)在(1)的条件下,直线
过焦点
,与抛物线
交于
两点,若弦长
等于
的周长,求直线
的方程;
(3)由抛物线弧![]()
和椭圆弧![]()
![]()
(
)合成的曲线叫“抛椭圆”,是否存在以原点
为直角顶点,另两个顶点
落在“抛椭圆”上的等腰直角三角形
,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆
的长轴长是焦距的两倍,其左、右焦点依次为
、
,抛物线![]()
的准线与
轴交于
,椭圆
与抛物线
的一个交点为
.
(1)当
时,求椭圆
的方程;
(2)在(1)的条件下,直线
过焦点
,与抛物线
交于
两点,若弦长
等于
的周长,求直线
的方程;
(3)由抛物线弧![]()
和椭圆弧![]()
![]()
(
)合成的曲线叫“抛椭圆”,是否存在以原点
为直角顶点,另两个顶点
落在“抛椭圆”上的等腰直角三角形
,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com