精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+
1
x
(a>0)

(1)当a=1时,利用函数单调性的定义证明函数f(x)在(0,1]内是单调减函数;
(2)当x∈(0,+∞)时f(x)≥1恒成立,求实数a的取值范围.
(1)任意取x1,x2∈(0,1]且x1<x2
f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=(x1-x2)(1-
1
x1x2
)=(x1-x2)
x1x2-1
x1x2

因为x1<x2,所以x1-x2<0
0<x1x2<1,所以x1x2-1<0
所以f(x1)-f(x2)>0,
即f(x1)>f(x2),
所以f(x)在( 0,1]上是单调减函数.
(2)∵x∈(0,+∞),f(x)=ax+
1
x
ax2+1
x
≥1
恒成立,
等价于当x∈(0,+∞)时ax2-x+1≥0恒成立即可,
∴a≥
x-1
x2
在x∈(0,+∞)恒成立 又
1
x
∈(0,+∞),
令g(x)=
x-1
x2
=-(
1
x
2+
1
x
=-(
1
x
-
1
2
2+
1
4
1
4

∴a≥
1
4

故a的取值范围[
1
4
,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案