精英家教网 > 高中数学 > 题目详情
7.已知数列{an}前n项和为Sn,且Sn=4an-3,求an

分析 由已知数列递推式求得首项,进一步可得数列{an}是以1为首项,以$\frac{4}{3}$为公比的等比数列,再由等比数列的通项公式得答案.

解答 解:由Sn=4an-3,得a1=S1=4a1-3,即a1=1;
当n≥2时,有Sn-1=4an-1-3,两式作差得:
an=4an-4an-1,即3an=4an-1 (n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}=\frac{4}{3}$.
∴数列{an}是以1为首项,以$\frac{4}{3}$为公比的等比数列.
则${a}_{n}=(\frac{4}{3})^{n-1}$.

点评 本题考查数列递推式,考查了等比关系的确定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.
(1)求证:BC⊥AM;
(2)若AM∥平面BDE,试求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知(x+$\frac{1}{x}$)2n的展开式中所有系数之和比(3$\root{3}{x}$-x)n的展开式中所有系数之和大240.
(1)求(x+$\frac{1}{x}$)2n的展开式中中的常数项(用数字作答);
(2)求(2x-$\frac{1}{x}$)n的展开式的二项式系数之和(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设x1,x2,…,xn的平均数是$\overline{x}$,方差是s2,则另一组数2x1+1,2x2+1,…2xn+1的平均数和方差分别是(  )
A.2$\overline{x}$,2s2+1B.2$\overline{x}$+1,4s2C.2$\overline{x}$,s2D.2$\overline{x}$+1,4s2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了对某课题进行讨论研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据如表(单位:人).
高校相关人数抽取人数
Ax1
B36y
C543
(1)求x,y;
(2)若从高校B相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程($\frac{1}{3}$)x-log4x=0的解的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知数列{an}的前n项和Sn=(一1)n+1,求an
(2)数列{an}的前n项和Sn=3+2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的导数:
(1)y=x4+cosx;
(2)y=$\frac{1}{\root{3}{x}}$+e3
(3)y=2x+ex+1;
(4)y=x-$\sqrt{x}$-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,∠A=60°,b=90,c=50,求a和∠B.

查看答案和解析>>

同步练习册答案