【题目】同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
【答案】(1)如解析所示;(2)
【解析】【试题分析】(1)先将同时投掷两个骰子的点数全部列举出来;(2)列举出来点数之和是5的所有可能结果(1,4),(2,3)(3,2)(4,1),共四种;(3)依据题设中要求“向上的点数之和是5”,运用古典概型的计算公式求出满足题设条件的事件的概率为。
解:(1)
1点 | 2点 | 3点 | 4点 | 5点 | 6点 | |
1点 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2点 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3点 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4点 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5点 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6点 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
掷一个骰子的结果有6种。我们把两个标上记号1、2以便区分,由于1号骰子 的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。
(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3)(3,2)(4,1)
其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。
由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
科目:高中数学 来源: 题型:
【题目】某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形, 平面, 分别为的中点,且.
(1)求证:平面平面;
(2)求证:平面平面;
(3)求三棱锥与四棱锥的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-)的大小顺序是:( )
A. f(-)>f(3)>f(-2) B. f(-) >f(-2)>f(3)
C. f(-2)>f(3)> f(-) D. f(3)>f(-2)> f(-)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1处有极值10,求a,b的值;
(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任取两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都放入盒中,则( )
A. 乙盒中红球与丙盒中黑球一样多
B. 乙盒中黑球不多于丙盒中黑球
C. 乙盒中红球不多于丙盒中红球
D. 乙盒中黑球与丙盒中红球一样多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线与反比例函数的图象交于B、C两点,B(2,m)且m<2,正方形ABCD的顶点A、D在坐标轴上。
⑴ 求, 的值;
⑵ 直接写出时, 的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com