精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是正方形, 平面 分别为的中点,且.

(1)求证:平面平面

(2)求证:平面平面

(3)求三棱锥与四棱锥的体积之比.

【答案】(1)(2)证明过程详见解析;(3)1:4

【解析】试题分析:(1)欲证平面平面,根据面面垂直的判定定理可知在平面内一直线与平面垂直,而根据线面垂直的判定定理可知平面平面,满足定理条件;(2)证明,利用线面平行的判定定理,即可证明平面;(3)不妨设,求出,得到 ,求出PD,根据,所以即为点到平面的距离,根据三棱锥的体积公式求出体积得到 的比值.

试题解析:

(1)证明:∵分别为的中点,

又∵四边形是正方形,

,∴

在平面外, 在平面内,

平面 平面

又∵都在平面内且相交,

∴平面平面.

(2)证明:由已知平面

平面.

平面,∴.

∵四边形为正方形,∴

,∴平面

中,∵分别为的中点,

,∴平面.

平面,∴平面平面.

(3)解:∵平面,四边形为正方形,不妨设,则.

平面,且

即为点到平面的距离,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为也是抛物线的焦点,点M在第一象限的交点,且.

1)求的方程;

2)平面上的点N满足,直线,且与交于A,B两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A={x|x2+8x=0},B={x|x2+2(a+2)xa2-4=0},其中a∈R.如果ABB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.

(1)若△ABC的面积等于,求a,b;

(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区工商局、消费者协会在号举行了以携手共治,畅享消费为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率;

)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知=(sinxcosx),=(cosφ,sinφ)(|φ|<).函数

fx)=fx)=fx).

(Ⅰ)求fx)的解析式及单调递增区间;

(Ⅱ)将fx)的图象向右平移单位得gx)的图象,若gx)+1≤ax+cosxx∈[0, ]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),当时,曲线上对应的点为.以原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(I)求曲线的普通方程和曲线的直角坐标方程;

(II)设曲线的公共点为,求的值.

查看答案和解析>>

同步练习册答案