精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\sqrt{{(\frac{1}{2})}^{x}-2}$的定义域是(-∞,-1].

分析 根据使函数f(x)=$\sqrt{{(\frac{1}{2})}^{x}-2}$的解析式有意义的原则,构造不等式,解得函数的定义域.

解答 解:若使函数f(x)=$\sqrt{{(\frac{1}{2})}^{x}-2}$的解析式有意义,
自变量x须满足:${(\frac{1}{2})}^{x}-2≥0$,
解得:x∈(-∞,-1],
故函数f(x)=$\sqrt{{(\frac{1}{2})}^{x}-2}$的定义域为:(-∞,-1],
故答案为:(-∞,-1]

点评 本题考查的知识点是函数的定义域,指数不等式的解法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知圆C:x2+y2-2x-1=0,直线l:3x-4y+12=0,圆C上任意一点P到直线l的距离小于2的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在锐角△ABC的内角A,B,C的对边分别为a,b,c,且$\sqrt{3}$a=2csinA.
(1)确定角C的大小;
(2)若c=$\sqrt{7}$,且ab=6,求边a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为为$\frac{1}{2}$,F为椭圆C的右焦点A(-a,0),|AF|=3.
(I) 求椭圆C的方程;
(II) 设O为原点,P为椭圆上一点,AP的中点为M.直线OM与直线x=4交于点D,过O作OE丄DF,交直线x=4于点E.求证:OE∥AP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量|$\overrightarrow{AB}$|=2,|$\overrightarrow{CD}$|=1,且|$\overrightarrow{AB}$-2$\overrightarrow{CD}$|=2$\sqrt{3}$,则向量$\overrightarrow{AB}$和$\overrightarrow{CD}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点分别为A(0,b)和C(0,-b),两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(3c,0)的直线AE与椭圆相交于另一点B,且F1A∥F2B.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0),其部分图象如图所示,点P,Q分别为图象上相邻的最高点与最低点,R是图象与x轴的交点,若P点的横坐标为$\frac{1}{3}$,f($\frac{1}{3}$)=$\sqrt{3}$,PR⊥QR,则函数f(x)的解析式可以是(  )
A.$f(x)=\sqrt{3}sin(\frac{π}{2}x+\frac{π}{3})$B.$f(x)=\sqrt{3}sin(\frac{π}{2}x-\frac{π}{6})$
C.$f(x)=\sqrt{3}sin(\frac{2π}{3}x+\frac{5π}{18})$D.$f(x)=\sqrt{3}sin(πx+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:
(1)甲同学没有加入“楹联社”;
(2)乙同学没有加入“汉服社”;
(3)加入“楹联社”的那名同学不在高二年级;
(4)加入“汉服社”的那名同学在高一年级;
(5)乙同学不在高三年级.
试问:丙同学所在的社团是(  )
A.楹联社B.书法社
C.汉服社D.条件不足无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若△ABC的内角A,B,C的对边分别为a,b,c,若a+b=2,∠C=120°,则边c的最小值是$\sqrt{3}$.

查看答案和解析>>

同步练习册答案