精英家教网 > 高中数学 > 题目详情
13.已知圆C:x2+y2-2x-1=0,直线l:3x-4y+12=0,圆C上任意一点P到直线l的距离小于2的概率为$\frac{1}{4}$.

分析 根据几何概型,求出圆心到直线的距离,利用几何概型的概率公式分别求出对应的测度即可得到结论.

解答 解:由题意知圆的标准方程为(x-1)2+y2=2的圆心是(1,0),
圆心到直线3x-4y+12=0的距离是d=$\frac{|3+12|}{\sqrt{{3}^{2}{+4}^{2}}}$=$\frac{15}{5}$=3,
当与3x-4y+12=0平行,且在直线下方距离为2的平行直线为3x-4y+b=0,
则d=$\frac{|12-b|}{\sqrt{{3}^{2}{+4}^{2}}}$=$\frac{|b-12|}{5}$=2,则|b-12|=10,
即b=22(舍)或b=2,此时直线为3x-4y+2=0,
则此时圆心到直线3x-4y+2=0的距离d=1,即三角形ACB为直角三角形,
当P位于弧ADB时,此时P到直线l的距离小于2,
则根据几何概型的概率公式得到P=$\frac{{90}^{°}}{{360}^{°}}$=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.

点评 本题主要考查几何概型的概率计算,利用条件确定圆C上的点A到直线l的距离小于2对应区域是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在等比数列{an}中,若a4-a2=6,a5-a1=15,求a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某种日用品上市以后供不应求,为满足更多的消费者,某商场在销售的过程中要求购买这种产品的顾客必须参加如下活动:摇动如下图所示的游戏转盘(上面扇形的圆心角都相等),按照指针所指区域的数字购买商品的件数,每人只能参加一次这个活动.
(1)某顾客参加活动,求购买到不少于5件该产品的概率;
(2)甲、乙两位顾客参加活动,且甲,乙两人摇转盘时指针所指区域均在[2,6]内,求购买该产品件数之和大于8的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.cos240°+tan315°的值为-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)是定义在区间(0,+∞)上可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式$\frac{{({x+2017})f({x+2017})}}{5}$$<\frac{5f(5)}{x+2017}$的解集为(  )
A.{x|x>-2012}B.{x|x<-2012}C.{x|-2012<x<0}D.{x|-2017<x<-2012}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}{x^2}$-ax+(a-1)lnx.
(Ⅰ)当a=2,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数y=sin(x+$\frac{π}{4}$)图象上的所有点纵坐标不变,横坐标变为原来的$\frac{1}{2}$倍,所得函数为f(x),则函数f(x)=$f(x)=sin(2x+\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R).
(1)求函数f(x)的单调区间;
(2)若g(x)=$\frac{1}{3}{x^3}-ln({x+1})+f({x+2})$满足:对任意的x1,x2∈[0,1],都有|g(x1)-g(x2)|≤1恒成立,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\sqrt{{(\frac{1}{2})}^{x}-2}$的定义域是(-∞,-1].

查看答案和解析>>

同步练习册答案