精英家教网 > 高中数学 > 题目详情
如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线轴上的截距为,求的最小值.
(1);(2);(3)

试题分析:(1)由题意知圆心的坐标为,半径为1,抛物线的准线方程为,因为圆心到抛物线准线的距离为,所以有,解得,从而求出抛物线方程为.
(2)由题意可知,直线轴,可求出点的坐标为,此时直线的倾斜角互补,即,又设点的坐标分别为,则,所以有,即,整理得,所以.
(3)由题意可设点的坐标分别为,则,因为是圆的切线,所以,因此,由点斜式可求出直线的直线方程分别为,又点在抛物线上,有,所以点的坐标为,代入直线的方程得,可整理为,从而可求得直线的方程为,令,得直线上的截距为,考虑到函数为单调递增函数,所以.
试题解析:(1)∵点到抛物线准线的距离为
,即抛物线的方程为.                 2分
(2)法一:∵当的角平分线垂直轴时,点,∴

,  ∴
.   .         7分
法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为
联立方程组,得
  ∴
同理可得,∴.         7分
(3)法一:设,∵,∴
可得,直线的方程为
同理,直线的方程为

∴直线的方程为
,可得
关于的函数在单调递增,  ∴.      14分
法二:设点
为圆心,为半径的圆方程为,①
方程:.②
①-②得:
直线的方程为
时,直线轴上的截距
关于的函数在单调递增,  ∴.          14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线,设点为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结并分别延长交抛物线于点,连结,设的斜率存在且分别为.

(1)若,求
(2)是否存在与无关的常数,是的恒成立,若存在,请将表示出来;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的两个焦点是F1(c,0),F2(c,0)(c>0)。
(I)若直线与椭圆C有公共点,求的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足   ,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面内.动点P与外切与内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线与直线相交于A、B 两点.
(1)求证:
(2)当的面积等于时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)抛物线与椭圆有公共焦点,设轴交于点,不同的两点 上(不重合),且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案