精英家教网 > 高中数学 > 题目详情
已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.
(1)抛物线C的方程为;(2)详见解析.

试题分析:(1)求抛物线C的方程,只需求出的值即可,由已知可知直线轴的交点为抛物线C的焦点,又以为直径的圆恰好过直线抛物线的交点,设交点为,则,故,即,解得,从而可得抛物线C的方程;(2),求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动,找出交点点的坐标即可,故需求出过两点的切线的方程,而有关,故可设出直线AB的方程为(斜率一定存在),再设出,,利用三点共线可得,再由导数的几何意义,求出斜率,得过点的切线方程为:,过点的切线方程为:,解出,结合,得,即得,从而得证。
试题解析:(1)直线轴的交点为抛物线C的焦点,又以为直径的圆恰好过直线抛物线的交点,,
所以抛物线C的方程为
(2)由题意知直线AB的斜率一定存在,设直线AB的方程为,
又设,
共线,,
,,同理可求
,过点的切线的斜率为,切线方程为:,
同理得过点的切线方程为:,联立得:

,即点Q在定直线上运动.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6,直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过如下五个点中的三个点:.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线轴上的截距为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的一个焦点坐标为,则双曲线的渐近线方程为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的左顶点的斜率为的直线交椭圆于另一个点,且点轴上的射影恰好为右焦点,若,则椭圆离心率的取值范围是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的顶点在原点,焦点F与双曲线的右焦点重合,过点且切斜率为1的直线与抛物线交于两点,则弦的中点到抛物线准线的距离为_____________________.

查看答案和解析>>

同步练习册答案