精英家教网 > 高中数学 > 题目详情
11.已知角α的终边经过点P(1,2),则tanα=2.

分析 利用任意角的三角函数的定义,求得tanα的值.

解答 解:∵角α的终边经过点P(1,2),则x=1,y=2,tanα=$\frac{y}{x}$=2,
故答案为:2.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=$\sqrt{3}$,且asinA+csinC-bsinB=asinC
(Ⅰ)求B;
(Ⅱ)求a+c的范围(文科求a+c的最大值).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-2x-3≤0},B={x|4x≥2},则A∪B=(  )
A.$[{\frac{1}{2},3}]$B.$[{\frac{1}{2},3})$C.(-∞,3]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如果一个数列从第2项起,每一项与它前一项的差都大于3,则称这个数列为“S型数列”.
(1)已知数列{an}满足a1=4,a2=8,an+an-1=8n-4(n≥2,n∈N*),求证:数列{an}是“S型数列”;
(2)已知等比数列{an}的首项与公比q均为正整数,且{an}为“S型数列”,记bn=$\frac{3}{4}$an,当数列{bn}不是“S型数列”时,求数列{an}的通项公式;
(3)是否存在一个正项数列{cn}是“S型数列”,当c2=9,且对任意大于等于2的自然数n都满足($\frac{1}{n}$-$\frac{1}{n+1}$)(2+$\frac{1}{{c}_{n}}$)≤$\frac{1}{{c}_{n-1}}$+$\frac{1}{{c}_{n}}$≤($\frac{1}{n}$-$\frac{1}{n+1}$)(2+$\frac{1}{{c}_{n-1}}$)?如果存在,给出数列{cn}的一个通项公式(不必证明);如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,侧面PAB,侧面PAC,侧PBC两两互相垂直,且$PA:PB:PC=1:\sqrt{2}:\sqrt{3}$,设三棱锥P-ABC的体积为V1,三棱锥P-ABC的外接球的体积为V2,则$\frac{V_2}{V_1}$=(  )
A.$\frac{{7\sqrt{14}}}{3}π$B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数$f(x)=sin(x+\frac{7π}{4})+cos(x-\frac{3π}{4})$则(  )
A.y=f(x)的最小正周期是π,其图象关于$x=-\frac{π}{4}$对称
B.y=f(x)的最小正周期是2π,其图象关于$x=\frac{π}{2}$对称
C.y=f(x)的最小正周期是π,其图象关于$x=\frac{π}{2}$对称
D.y=f(x)的最小正周期是2π,其图象关于$x=-\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=acos(x+2θ)+bx+3(a,b为非零常数),若f(1)=5,f(-1)=1,则θ的可能取值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件,求直线的一般方程:
(1)过点(2,1)且与直线2x+3y=0平行;
(2)与圆C:x2+y2=9相切,且与直线x-2y=0垂直.
(3)经过点(3,2),且在两坐标轴上的截距相等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和是Sn,若n>1时,2an=an+1+an-1,且S3<S5<S4,则满足Sn-1Sn<0(n>1)的正整数n的值为9.

查看答案和解析>>

同步练习册答案