19£®Èç¹ûÒ»¸öÊýÁдӵÚ2ÏîÆð£¬Ã¿Ò»ÏîÓëËüǰһÏîµÄ²î¶¼´óÓÚ3£¬Ôò³ÆÕâ¸öÊýÁÐΪ¡°SÐÍÊýÁС±£®
£¨1£©ÒÑÖªÊýÁÐ{an}Âú×ãa1=4£¬a2=8£¬an+an-1=8n-4£¨n¡Ý2£¬n¡ÊN*£©£¬ÇóÖ¤£ºÊýÁÐ{an}ÊÇ¡°SÐÍÊýÁС±£»
£¨2£©ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîÓ빫±Èq¾ùΪÕýÕûÊý£¬ÇÒ{an}Ϊ¡°SÐÍÊýÁС±£¬¼Çbn=$\frac{3}{4}$an£¬µ±ÊýÁÐ{bn}²»ÊÇ¡°SÐÍÊýÁС±Ê±£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÊÇ·ñ´æÔÚÒ»¸öÕýÏîÊýÁÐ{cn}ÊÇ¡°SÐÍÊýÁС±£¬µ±c2=9£¬ÇÒ¶ÔÈÎÒâ´óÓÚµÈÓÚ2µÄ×ÔÈ»Êýn¶¼Âú×㣨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¨2+$\frac{1}{{c}_{n}}$£©¡Ü$\frac{1}{{c}_{n-1}}$+$\frac{1}{{c}_{n}}$¡Ü£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¨2+$\frac{1}{{c}_{n-1}}$£©£¿Èç¹û´æÔÚ£¬¸ø³öÊýÁÐ{cn}µÄÒ»¸öͨÏʽ£¨²»±ØÖ¤Ã÷£©£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³öan=4n£¬´Ó¶øan-an-1=4£¾3£¬¼´¿ÉÖ¤Ã÷½áÂÛ£»
£¨2£©Ö¤Ã÷{bn-bn-1}µ¥µ÷µÝÔö£¬ÓÖ{bn}²»ÊÇ¡°SÐÍÊýÁС±ËùÒÔ£¬´æÔÚn0£¬Ê¹µÃ${b}_{{n}_{0}}$-${b}_{{n}_{0}-1}$¡Ü3£¬ËùÒÔb2-b1¡Ü${b}_{{n}_{0}}$-${b}_{{n}_{0}-1}$¡Ü3£¬¼´a1£¨q-1£©¡Ü4ÓÖÒòΪa2-a1£¾3£¬¼´a1£¨q-1£©£¾3ÇÒa1£¬q¡ÊN+£¬ËùÒÔa1£¨q-1£©=4£¬Óɴ˿ɵýáÂÛ£»
£¨3£©¿ÉÈ¡an=£¨n+1£©2£¬·ûºÏÌõ¼þ£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÓÉÌâÒ⣬an+1+an=8n+4 ¢Ù£¬an+an-1=8n-4 ¢Ú£¬
¢Ú-¢ÙµÃan+1-an-1=8      ¡­£¨4·Ö£©
ËùÒÔa2n=8n£¬a2n-1=8n-4£¬Òò´Ëan=4n£¬´Ó¶øan-an-1=4£¾3
ËùÒÔ£¬ÊýÁÐ{an}ÊÇ¡°SÐÍÊýÁС±¡­£¨6·Ö£©
£¨2£©ÓÉÌâÒâ¿ÉÖªa1¡Ý1£¬ÇÒan-an-1=4£¾3£¬Òò´Ë{an}µ¥µ÷µÝÔöÇÒq¡Ý2
¶ø£¨an-an-1£©-£¨an-1-an-2£©=an-1£¨q-1£©-an-2£¨q-1£©=£¨q-1£©£¨an-1-an-2£©£¾0
ËùÒÔ{an-an-1}µ¥µ÷µÝÔö£¬
ÓÖbn=$\frac{3}{4}$an£¬Òò´Ë{bn-bn-1}µ¥µ÷µÝÔö          ¡­£¨8·Ö£©
ÓÖ{bn}²»ÊÇ¡°SÐÍÊýÁС±ËùÒÔ£¬´æÔÚn0£¬Ê¹µÃ${b}_{{n}_{0}}$-${b}_{{n}_{0}-1}$¡Ü3£¬ËùÒÔb2-b1¡Ü${b}_{{n}_{0}}$-${b}_{{n}_{0}-1}$¡Ü3£¬
¼´a1£¨q-1£©¡Ü4ÓÖÒòΪa2-a1£¾3£¬¼´a1£¨q-1£©£¾3ÇÒa1£¬q¡ÊN+£¬ËùÒÔa1£¨q-1£©=4
´Ó¶øa1=4£¬q=2»òa1=2£¬q=3»òa1=1£¬q=5
¡àan=2n+1»ò${a_n}=2•{3^{n-1}}$»ò${a_n}={5^{n-1}}$¡­£¨12·Ö£©
£¨3£©¿ÉÈ¡an=£¨n+1£©2£¬ÑéÖ¤·ûºÏ£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¨2+$\frac{1}{{c}_{n}}$£©¡Ü$\frac{1}{{c}_{n-1}}$+$\frac{1}{{c}_{n}}$¡Ü£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¨2+$\frac{1}{{c}_{n-1}}$£©Ìõ¼þ£¬
¶øÇÒan-an-1=2n+1£¾3                              ¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éж¨Ò壬¿¼²éÊýÁеÄͨÏ¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ex£¬g£¨x£©=ax+b£¬£¨a£¬b¡ÊR£©
£¨1£©ÌÖÂÛº¯Êýy=f£¨x£©+g£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èç¹û$0¡Üa¡Ü\frac{1}{2}£¬b=1$£¬ÇóÖ¤£ºµ±x¡Ý0ʱ£¬$\frac{1}{f£¨x£©}+\frac{x}{g£¨x£©}¡Ý1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐ˵·¨Öв»ÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ù¶ÔÓÚ¶¨ÒåÓòÄڵĿɵ¼º¯Êýf£¨x£©£¬f£¨x£©ÔÚij´¦µÄµ¼ÊýΪ0ÊÇf£¨x£©Ôڸô¦È¡µ½¼«ÖµµÄ±ØÒª²»³ä·ÖÌõ¼þ£»
¢ÚÃüÌâ¡°?x¡ÊR£¬cosx¡Ü1¡±µÄ·ñ¶¨ÊÇ¡°?x0¡ÊR£¬cosx0¡Ý1¡±£»
¢ÛÈôÒ»¸öÃüÌâµÄÄæÃüÌâÎªÕæ£¬ÔòËüµÄ·ñÃüÌâÒ»¶¨Îª¼Ù£®
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=p+qsin3xµÄ×î´óÖµÓë×îСֵ·Ö±ðΪ3ºÍ-1£¬Çóº¯Êýg£¨x£©=£¨p-q£©cos3xµÄ×î´óÖµÓë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®f£¨x£©ÊÇÖÜÆÚΪ2µÄżº¯Êý£¬µ±0¡Üx¡Ü1ʱ£¬f£¨x£©=2x£¬Ôò$f£¨{-\frac{5}{2}}£©$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨1£©ÔÚRt ABC ÖУ¬CA CB£¬Ð±±ßAB ÉϵĸßΪ h£¬Ôò$\frac{1}{{h}^{2}}$ $\frac{1}{C{A}^{2}}$ $\frac{1}{C{B}^{2}}$£¬Àà±È´ËÐÔÖÊ£¬Èçͼ£¬ÔÚËÄÃæÌå PABCÖУ¬Èô PA£¬PB£¬PCÁ½Á½´¹Ö±£¬µ×ÃæABCÉϵĸßΪ h£¬¿É²ÂÏëµÃµ½µÄ½áÂÛΪ$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$£®
£¨2£©Ö¤Ã÷£¨1£©ÎÊÖеõ½µÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª½Ç¦ÁµÄÖձ߾­¹ýµãP£¨1£¬2£©£¬Ôòtan¦Á=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÊýÁÐ{an}ÖУ¬a1=3£¬3an+1=3an-2£¨n¡ÊN*£©£¬Ôò¸ÃÊýÁÐÖÐÏàÁÚÁ½ÏîµÄ³Ë»ýÊǸºÊýµÄÊÇ£¨¡¡¡¡£©
A£®a3a4B£®a4a5C£®a5a6D£®a6a7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¡÷ABCµÄÈý±ßa£¬b£¬c³ÉµÈ²îÊýÁУ¬A¡¢CÁ½µãµÄ×ø±ê·Ö±ðÊÇ£¨-1£¬0£©£¬£¨1£¬0£©£¬Çó¶¥µãBµÄ¹ì¼£·½³Ì$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¨x¡Ù¡À2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸