分析 立体几何中的类比推理主要是基本元素之间的类比:平面?空间,点?点或直线,直线?直线或平面,平面图形?平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.
解答 解:(1)∵在平面上的性质,若Rt△ABC的斜边AB上的高为h,则有 $\frac{1}{{h}^{2}}$=$\frac{1}{C{A}^{2}}$+$\frac{1}{C{B}^{2}}$.”
我们类比到空间中,可以类比推断出:
在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,有:$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$
(2)∵PA、PB、PC两两互相垂直,
∴PA⊥平面PBC.
设PD在平面PBC内部,且PD⊥BC,PA,PB,PC分别为a,b,c,
由已知有:PD=$\frac{bc}{\sqrt{{b}^{2}+{c}^{2}}}$,h=PO=$\frac{a•PD}{\sqrt{{a}^{2}+P{D}^{2}}}$,
∴h2=$\frac{{a}^{2}{b}^{2}{c}^{2}}{{a}^{2}{b}^{2}+{b}^{2}{c}^{2}+{c}^{2}{a}^{2}}$,即$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$.
点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.其思维过程大致是:观察、比较 联想、类推 猜测新的结论.
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 8 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-1 | B. | 2n-1 | C. | 2×3n-1. | D. | $\frac{1}{2}({{3^n}-1})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)的最小正周期是π,其图象关于$x=-\frac{π}{4}$对称 | |
| B. | y=f(x)的最小正周期是2π,其图象关于$x=\frac{π}{2}$对称 | |
| C. | y=f(x)的最小正周期是π,其图象关于$x=\frac{π}{2}$对称 | |
| D. | y=f(x)的最小正周期是2π,其图象关于$x=-\frac{π}{4}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限或第三象限 | B. | 第二象限或第四象限 | ||
| C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com